Applied Mathematics Seminar——A highly parallel numerical method for the Navier-Stokes/Darcy equations and its application to human liver
报告人:林增(中国科学院深圳先进技术研究院)
时间:2024-09-10 10:15-11:15
地点:智华楼-四元厅-225
Abstract:
In this talk, I will present a highly parallel method for the incompressible Navier-Stokes and Darcy equations for the simulation of the blood flows in the full three-dimensional patient-specific human liver, which include hepatic artery, portal vein, hepatic vein and hepatic tissue. To compute the blood flows, a scalable parallel method is used to implicitly solve the unsteady incompressible Navier-Stokes and Darcy equations discretized with a stabilized finite element method on fully unstructured meshes. The parallel algebraic solver includes an Newton method, a Krylov subspace method (GMRES) and an overlapping Schwarz preconditioner. As applications, I also simulate the flow in a patient with hepatectomy and calculate the Portal Pressure Gradient (PPG), where PPG is a gold standard value to assess the portal hypertension. Moreover, the robustness and scalability of the algorithm are also investigated. A 83% parallel efficiency is achieved for solving a problem with 7 million elements on a supercomputer with more than 1000 processor cores.
Bio:
林增,博士,现任中国科学院深圳先进技术研究院助理研究员。厦门大学计算数学专业博士(2019),澳大利亚昆士兰科技大学联合培养博士(2018)。入选深圳市海外高层次人才、深圳市优秀科技创新人才。主要从事计算数学和计算力学方面的研究工作,研究方向包括:高性能计算及其在人体血流动力学中的应用,整数/分数阶偏微分方程的高效有限元和无网格求解方法。在CM、IJNMBE等期刊发表学术论文20余篇,总引用量470余次。主持和参与国家级、省部级、市级项目10余项,包括负责科技部国家重点研发计划子专题,主持广东省自然科学基金面上项目和青年项目、中国博士后科学基金面上项目、广东省计算科学重点实验室开放基金等。担任中国理论数学前沿期刊编委、美国计算力学和中国工业与应用数学等多个学会会员。