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ABSTRACT
We use the Hawkes process tomodel the high-frequency price process of 108 stocks in
the Chinese stock market, in order to understand the endogeneity of price changes
and the mechanism of information processing. Using a piece-wise constant exoge-
nous intensity, we employ non-parametric estimation, residual analysis, and Bayesian
Information Criterion (BIC) to determine that a power-law kernel is the most appro-
priate for our data. We propose the internal branching ratio to represent endogeneity
within a finite interval. The branching ratio tends to be higher after the market opens
and before the market closes, with a mean value of around 0.81, suggesting signifi-
cant endogeneity in price changes. In addition, we explore the relationship between
branching ratios and stock characteristics using panel regression. Higher branching
ratios are associated with lower levels of price efficiency at high, but not low, frequen-
cies. Finally, the branching ratio increases over time without significant impact from
COVID-19.
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1. Introduction

The debate over the efficiency of financial markets has generated a great deal of attention, particularly regarding
the ‘endo-exo problem’ (Wheatley, Wehrli, and Sornette 2019), which concerns the decomposition of market
activities into endogenous and exogenous parts. The efficient market hypothesis (EMH) posits that the market
fully and instantaneously reflects all available information in asset prices (Fama 1970; Samuelson 1965), such that
market prices are driven solely by exogenous inputs of information. However, empirical studies have shown that
a significant fraction of asset price fluctuations cannot be explained by changes in their underlying fundamental
value (Cutler, Poterba, and Summers 1989; Fair 2002). To better understand the dynamics of financial markets,
Lo (2004, 2017) proposes the Adaptive Markets Hypothesis to complement EMH, which maintains that the
actual price process incorporates information gradually and adaptively.

In this article, we use the Hawkes process (Hawkes 1971a,b) to model the high-frequency price process in
order to understand the endogeneity of price changes and the mechanism of information processing. Hawkes
processes have emerged as a popular tool for studying fluctuations in high-frequency financial prices (Bacry,
Mastromatteo, and Muzy 2015; Hawkes 2018, 2020), partly due to their ability to naturally decompose endoge-
nous and exogenous components within a branching representation (Ogata 1981). By leveraging this powerful
framework, researchers can better understand the process by which information is incorporated into prices, and
the intricate relationships between different variables that influence information processing in financialmarkets.
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A crucial debate regarding Hawkes processes centers around whether the observed processes are critical,
which is equivalent to whether the branching ratio η is greater or less than one (see Section 2 for mathemat-
ical details of the Hawkes processes).1 In particular, it has been shown that inadequate treatments of major
features of the data, including trends (e.g. intraday seasonality), external shocks, and data artifacts (e.g. limited
data resolution), can upward bias the estimates of the degree of self-excitation and memory (Filimonov and
Sornette 2015; Wehrli, Wheatley, and Sornette 2021). Filimonov and Sornette (2015) apply Hawkes processes
to the high-frequency data of E-mini S&P 500 futures contracts and study how to deal with trends, choose an
appropriate kernel function, and analyze possible sources of estimation bias.

Our study uses high-frequency data from 108 liquid stocks on China’s Shenzhen Stock Exchange that are
constituents of the CSI 300 index from 2019 to 2020. Among the international markets, the Chinese financial
market is of particular importance because of its growing size2 as well as increasing centrality in the global
financial system.3 In addition, the Chinese stock market has several unique features that make research on mar-
ket microstructure and the mechanism of information processing both interesting and challenging. First, unlike
developedmarkets that are dominated by institutional investors, the Chinese stockmarket is dominated by retail
investors (Jones et al. 2020;W. Li andWang 2010). The speculative and short-term tradingmotives ofmany retail
investors may lead to very different price formationmechanisms compared to institutional investor-drivenmar-
kets. Second, short sales of individual stocks are very difficult to carry out in China.4 Although there is no broad
consensus, many academics agree that a lack of short-selling hinders price discovery, renderingmarkets less effi-
cient (Saffi and Sigurdsson 2011). Third, the degree of automation in the Chinese market, though has increased
in recent years, is still relatively low compared to developed markets such as the US.

We conduct a comprehensive analysis to show that the power-law kernel is the most appropriate parametric
form of the kernel function for data in the Chinese stock market. Wemeasure the level of endogeneity for stocks
in the Shenzhen Stock Exchange with different lengths of timewindows.We also analyze the level of endogeneity
cross-sectionally and study its relationship to classical proxies of price efficiency as well as other stock charac-
teristics. In addition, we check whether the endogeneity of price processes changes over time, and whether it
is affected by COVID-19. To the best of our knowledge, this is the first study on the ‘endo-exo problem’ in the
Chinese financial market.

First, we use non-parametric methods based on the Fourier transform to estimate the kernel function of a
shock event in the market. We also compare the log-likelihood and residuals of various parametric kernel func-
tions. Both analyzes suggest that the power-law kernel function of the form (4) is the most appropriate. We then
set the exogenous intensity function as piece-wise constant and follow Wheatley, Wehrli, and Sornette (2019)
to determine the optimal number of segments for the exogenous intensity function given different lengths of
estimation window based on the Bayesian Information Criterion (BIC).

Next, to accommodate the fact that stock markets open for a limited time each day, we measure endogeneity
by proposing the internal branching ratio. We introduce a maximum likelihood estimation method to aggregate
data across different trading days and estimate the internal branching ratio for different time windows within a
day. We observe that the branching ratio tends to be higher after the market opens and before the market closes.
The mean value of the branching ratio is around 0.79, and its aggregate estimate is around 0.81. This implies
significant endogeneity in price changes, although not reaching criticality.

Finally, we estimate and compare the branching ratio for 108 stocks cross-sectionally, and study the impact
of the COVID-19 pandemic on the branching ratio. The branching ratio measures the ability of the market to
absorb information, thus intuitively it should be related to market efficiency. Our empirical results show that
higher branching ratios are associated with lower levels of price efficiency, as measured by the variance ratio
statistic (Lo andMacKinlay 1988), at high frequencies.However, this phenomenondisappears at low frequencies,
suggesting that activities from high-frequency traders are driving this phenomenon. Moreover, the branching
ratio of the Chinese stock market is increasing over time, and is not significantly influenced by the COVID-19
pandemic.

The remainder of the article is organized as follows. In Section 2, we introduce the Hawkes process and
propose a new measure, the internal branching ratio, to measure the endogeneity of a sample within a
finite window. Section 3 describes the data. Section 4 discusses model selection. Section 5 reports estimation
results of the internal branching ratio in the Chinese stock market and provides its economic interpretation.
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Section 6 provides several robustness checks. Section 7 concludes.We provide additional technical details in the
Appendix.

2. Hawkes processes

The methodology for estimating the endogeneity in the dynamics of a given point process is based on the self-
excited conditional Poisson model introduced by Hawkes (1971a,b). As a point process, given an ordered set
of event times, {ti : i = 1, 2, . . .}, satisfying ti � tj for i< j, the Hawkes process is the corresponding counting
process, N(t) = max{i : ti � t}. Moreover, a point process is fully characterized by its conditional intensity:

λ(t|Ft−) = lim
h↓0

1
h

P [N(t + h)− N(t) > 0|Ft−] , (1)

whereFt− = {t1, . . . , ti : ti < t} is the filtration that represents the history of the process until time t. ForHawkes
processes, the conditional intensity takes the following general form:

λ(t) ≡ μ(t)+
∫ t

−∞
φ(t − s)dNs. (2)

Here μ(t) is referred to as the exogenous intensity (or background intensity), which is a deterministic function
of time that accounts for the intensity of arrival of exogenous events that are independent of history, and the
deterministic kernel functionφ(t)models the endogenous feedbackmechanism and captures thememory effects
of the process.

Next, we present the parametric forms of the kernel function in Section 2.1, establish the definition of
the branching ratio in Section 2.2, and elaborate on the estimation of the Hawkes process in Section 2.3. In
Section 2.4, we propose the concept of internal branching ratio as a measure of endogeneity of a sample of finite
length.

2.1. Parametric forms of the Kernel function

Hawkes processes typically use parametric kernel functions φ(t). In particular, we consider the following three
candidates.

The exponential kernel, first proposed by Hawkes (1971b), is defined as

φ(t|η,β) = ηβe−βt (3)

with parameters η and β . This exponential form ensures the Markovian property (Oakes 1975) and is
widely adopted in financial applications (Bowsher 2007; Cont 2011; Filimonov et al. 2014; Filimonov and
Sornette 2012).

The power-law kernel is defined as

φ(t|η, p, c) = ηpcp(t + c)−1−p, (4)

with parameters η, p and c. This power-law form comes from the application of Hawkes processes in geophysics
(Helmstetter and Sornette 2002; Ogata 1988; Vere-Jones 1970; Vere-Jones and Ozaki 1982).

The exponential power-law kernel, recently adopted byHardiman, Bercot, and Bouchaud (2013), represents
the sum of exponential functions with a power-law decay. Specifically, it is given by

φ(t|η, ε, τ0) = η

Z

(M−1∑
i=0

(
1
ξi

)1+ε
e−

t
ξi − Se−

t
ξ−1

)
(5)

where ξi = τ0mi,−1 � i < M, and Z and S are normalizing parameters that ensure
∫∞
0 φ(t)dt = η and φ(0) =

0. This kernel function allows for a delay in the shock of an event, resulting in a peak at a specific lag controlled
by τ0. Moreover, it approximately follows a power law at the tail.



952 J. ZHUO ET AL.

2.2. Branching ratio

The branching ratio of Hawkes processes, including those specified by all three kernel functions in Section 2.1,
is defined as

η ≡
∫ ∞

0
φ(t)dt. (6)

We provide a few remarks to illustrate its intuition.
The definition of the branching ratio (6) is derived from the generalized branching process representation of

Hawkes processes, whichwas initially introduced byHawkes andOakes (1974). According to this representation,
a Hawkes process can be viewed as an immigrant-birth process, consisting of a Poisson immigrant with a rate
of μ(t) and Poisson descendants with a rate of φ(t).

In this context, the branching ratio η precisely represents the expected number of descendants triggered by an
immigrant. Depending on the branching ratio, there are three regimes: (i) sub-critical (η < 1), (ii) critical (η =
1), and (iii) super-critical or explosive (η > 1). In the sub-critical and critical regimes, the process eventually
dies out with a probability of 1, while in the super-critical regime, there exists a finite probability for the process
to escalate to an infinite number of events.

Furthermore, in the case of a constant exogenous intensity (μ(t) is a constant) and in the sub-critical regime
(η < 1), the branching ratio is exactly equal to the average fraction of the number of descendants in the whole
population of events (Filimonov and Sornette 2012; Helmstetter and Sornette 2002). In other words, the branch-
ing ratio represents the average proportion of endogenously generated events relative to all events. Hence, the
branching ratio serves as an effective measure of the system’s level of endogeneity.

2.3. Parameter estimation

When applying Hawkes processes in practice, events are usually observed at times within a finite time interval,
[0,T]:

0 ≤ t1 < t2 < · · · < tNT ≤ T, (7)

whereNT is the total number of the events occured in [0,T]. Therefore, we use maximum likelihood estimation
and estimate parameters of the Hawkes process by maximizing the following log-likelihood function:

ln L(t1, t2, . . . , tn|θ) = −
∫ T

0
λ(t|θ)dt +

∫ T

0
ln λ(t|θ)dNt

= −
∫ T

0
λ(t|θ)dt +

NT∑
i=1

ln λ(ti|θ). (8)

In particular, we maximize the log-likelihood function over the set of parameters θ using the L-BFGS-B
algorithm (Byrd et al. 1995; Zhu et al. 1997). Generally, the calculation of the log-likelihood function (8) has
a computational complexity ofO(N2

T). However, for exponential kernels (3) and exponential power-law (5) ker-
nels, the complexity can be reduced toO(NT) by leveraging a recursive relation (Ozaki 1979). For the power-law
kernel (4), a discretization algorithm can be employed to achieve the same computational complexity reduction
(Ogata,Matsuúra, and Katsura 1993). Additional details of the discretization algorithm for the power-law kernel
can be found in Appendix 1.

Notably, optimizing the log-likelihood function (8) involves several challenges. The log-likelihood function
is not convex when the kernel is specified by a power law or an exponential power law function. However, as
demonstrated later in Section 6.3, despite its non-convex nature, the log-likelihood usually exhibits a unique
global maximum under the power law in practice. This global maximum can be efficiently obtained through the
L-BFGS-B algorithm. In contrast, when the kernel follows an exponential power law, the log-likelihood has two
local maximums. Therefore, it is important to choose appropriate initial values for the optimization algorithm
to converge to the global maximum. The specific details of our optimization are provided in Section 6.3.
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After the parameters of the Hawkes process are estimated, we perform model evaluation by comparing with
non-parametric estimation, using Bayesian information criterion (BIC), and conducting residual analysis. First,
we employ non-parametric estimation of the Hawkes model as a benchmark for different forms of the back-
ground intensity and kernel function. The details of the non-parametric estimation are discussed in Section 4.1
and elaborated further in Appendix 2. Second, a crucial criterion formodel selection is the Bayesian information
criterion (BIC), defined as

BIC = np lnNT − 2 ln L, (9)

where np denotes the number of parameters in the model, NT represents the total number of events within
the time window [0,T], and ln L corresponds to the log-likelihood function (8). Finally, we validate our model
with the goodness-of-fit using residual analysis (Ogata 1988). Specifically, we consider ξi = ∫ ti

0 λ(t)dt. If the
estimation of λ(t) is accurate, {ξi} must be a Poisson process with a constant intensity of 1. To evaluate the
performance of the three kernel functions, we calculate the sequence {ξi} under each kernel. By comparing
the deviations in the {ξi} sequence with the exponential distribution, we can draw conclusions regarding the
effectiveness of each kernel function.

2.4. Internal branching ratio

When applying Hawkes processes, the observed jump events are typically limited to a finite time interval [0,T].
This is true for most financial markets and, in particular, the Chinese stock market trades for four hours on
each trading day. Therefore, the data of new events derived from observed events within the interval [0,T]
is truncated. When the kernel function decays slowly, such as in the case of a power-law kernel with a small
exponent, the expected number of derived events for an event in the interval is much smaller than the branching
ratio. This observation can be further supported by the following Proposition 2.1 which provides an expression
of the estimated branching ratio.

First, we represent the window length, the kernel function, the branching ratio, and the normalization of
the kernel function by T, φ(t), η, and h(t) respectively, where h(t) = φ(t)/η. To understand the relationship
between events, we considerπi,j = φ(ti − tj)/λ(ti), which represents the probability that the ith event originates
from the jth event. Furthermore, we define H(t) = ∫ t

0 h(s)ds and H0 = ∑NT
i=1H(T − ti). Finally, we denote the

estimated parameters by θ̂ and calculate η̂, π̂i,j, and Ĥ0 by substituting θ = θ̂ , where θ is the parameter vector
of the Hawkes model. We have the following proposition, which expresses the relationship between the above
estimators.

Proposition 2.1: The estimated parameters, η̂, π̂i,j, and Ĥ0, satisfy the following equation:

η̂ =
∑

1�j<i�NT
π̂i,j

Ĥ0
. (10)

Proof: The log-likelihood satisfies:

ln L = −
∫ T

0

(
μ(t)+ η

∑
ti<t

h(t − ti)

)
dt +

NT∑
i=1

ln

⎛
⎝μ(ti)+ η

∑
tj<ti

h(ti − tj)

⎞
⎠

= −
∫ T

0
μ(t)dt − η

NT∑
i=1

∫ T

ti
h(t − ti)dt +

NT∑
i=1

ln

⎛
⎝μ(ti)+ η

∑
tj<ti

h(ti − tj)

⎞
⎠ .

Hence we have

∂ ln L
∂η

= −H0 +
NT∑
i=1

∑
tj<ti h(ti − tj)

μ(ti)+ η
∑

tj<ti h(ti − tj)
= −H0 +

∑
1�j<i�NT

πi,j

η
.
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When ln L reaches its maximum at θ̂ , we have ∂ ln L
∂η

= 0, resulting in

η̂ =
∑

1�j<i�NT
π̂i,j

Ĥ0
. �

Notably, H(T − ti) represents the expected proportion of offspring within the window [0,T] to all offspring
of the ith event andH0 is the sum of these proportions. Therefore, themaximum likelihood estimation η̂ extends
the information within the finite window to infinite time. As a result, this measure of endogeneity can substan-
tially differ from the actual proportion of endogenous events in the interval. Furthermore, as shown empirically
in Section 4.1, the actual kernel function decays with a power law. Prior research by Hardiman, Bercot, and
Bouchaud (2013) highlights that a power-law decaying kernel may exhibit a lower exponent at short times and
a higher exponent at long times. In this case, if the observed data only captures the part with a lower exponent,
extending the kernel function potentially leads to a substantial error in estimating the branching ratio.

For these reasons, it is not appropriate to directly use the original definition of the branching ratio (6) to
measure the endogeneity within a finite window. To address this problem, we propose the internal branching
ratio to measure the endogeneity of a process within a window of finite length.

Definition 2.1 (Internal Branching Ratio): For a Hawkes process with a conditional intensity function (2), the
internal branching ratio over a finite time interval [0,T] is defined as

ηin =
∑

1�j<i�NT
πi,j

NT
(11)

where NT is the total number of the events in the window [0,T].

The following result shows that the internal branching ratio ηin is never greater than one.

Proposition 2.2: The internal branching ratio satisfies the following equation:

ηin = 1 − 1
NT

NT∑
i=1

μ(ti)
λ(ti)

. (12)

Proof: According to Definition 2.1 and Equation (2), we have

ηin =
∑

1�j<i�NT
πi,j

NT

= 1
NT

( NT∑
i=1

∑i−1
j=1 φ(ti − tj)

λ(ti)

)

= 1
NT

( NT∑
i=1

λ(ti)− μ(ti)
λ(ti)

)

= 1 − 1
NT

NT∑
i=1

μ(ti)
λ(ti)

. �

This new definition performs well in finite sample, as shown in Section 5.1.
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Figure 1. Descriptive statistics for all 108 stocks in the dataset. Stocks are sorted on the horizontal axis by the number of valid trading days. The
black line shows the number of trading days that pass the screening criteria. The light blue shade shows the minimum and maximum number of
daily mid-price changes across trading days for each stock. The blue shade shows the 25th and 75th percentile of the same quantity. The red line
shows the mean value of the same quantity.

Table 1. Descriptive statistics for five sample stocks in the dataset. For each stock, we should the stock ID, the number of trading days that pass
the screening criteria, and the minimum, 25th percentile, median, mean, 75th percentile, and maximum number of daily mid-price changes.

Stock ID Valid dates Minimum 25% quantile Median Mean 75% quantile Maximum

000001 482 716 2157 3373 4060 5158 16,680
000002 483 610 3694 5338 5995 7312 23,131
000063 468 2502 6352 9092 10,930 13,243 41,308
000069 481 224 564 847 1063 1224 9782
000100 467 33 206 718 1369 1886 14,289

3. Data

3.1. Raw data

We obtain the raw data from the Shenzhen Stock Exchange (SZSE) Historical Tick Data of the Chinese stock
market.5 We select stocks that are constituents of the CSI 300 Index, which contains 121 liquid stocks in our
sample period.6 Our data contains tick-level trade and quote records over 484 trading days, starting from January
2nd, 2019 to December 31st, 2020. The timestamps in the raw data have a precision of 10 milliseconds. We
exclude several trading days due to data corruption.7 We also exclude stocks that are listed after December 1st,
2018, and stocks that are suspended for more than one month from 2019 to 2020. This leads to a final sample of
108 stocks for our analysis.

3.2. Preprocessing

Our research focuses on the mid-price process of individual stocks. We follow the data preprocessing in Zhang
et al. (2022) to reconstruct the order book during continuous bidding.8 We use the most granular observations
of the mid-price process, whose timestamps have a precision of 10 milliseconds. Therefore, there can still exist
multiple mid-price changes marked with the same timestamp, in which case we redistribute those events evenly
across the 10-millisecond window.9

In order to ensure reliable parameter estimation, for each stock, we only include trading days in which the
stock price does not reach the daily price limits, does not experience temporary suspensions frommajor events,
and the mid-price jumps more than 20 times.

Table 1 provides the number of valid trading days and the descriptive statistics of the daily mid-price changes
for five sample stocks, and Figure 1 provides the same statistics for all 108 stocks in our sample. The vastmajority
of stocks have an average of at least 1,000 mid-price changes per day. This allows us to model the price changes
with the Hawkes process and estimate parameters reliably. Meanwhile, the vast majority of stocks have at least
95% of all trading days available in our analysis, which shows that the filtering should not lead to large selection
biases for our analysis. The trading days mentioned hereafter are the valid trading days.
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Figure 2. Themainpanel shows thebackground intensityλm(t)of PingAnBank. The empirical intensity functionof each tradingday is calculated
with a step size of 0.1 seconds. The left sub-panel shows the intensity function for the first 30 seconds in the morning, while the right sub-panel
shows the intensity function for the last 20 seconds before the closing auction and the first 10 seconds during the closing auction.

3.3. Detrending

The general sub-critical Hawkes process is stationary. However, it is well-known that trading activities exhibit
strong intraday patterns and are considered non-stationary. For example, the mid-price changes rapidly at the
start of each morning and afternoon session, which aligns with the observed liquidity patterns of the Chinese
market (Zhang et al. 2022). Moreover, Wu, Zhang, and Dai (2022) and Wehrli, Wheatley, and Sornette (2021)
report the existence of periodic patterns in mid-price changes in both the Chinese and US stock markets as
well as EUR/USD data, respectively. As an illustrative example, Figure 2 demonstrates the background intensity
function of the mid-price process for a sample stock, Ping An Bank, averaged over trading days.

To prepare the data for analysis with aHawkes process, we follow the approach outlined byHardiman, Bercot,
and Bouchaud (2013) and Filimonov and Sornette (2015) to remove any underlying trends. Specifically, we
assume that the timestamps ti arise from a Hawkes processNt with a known exogenous intensity functionμ(t).
Under this assumption, we calculate the corresponding timestamps ri as

∫ ti
0 μ(t)dt, which effectively removes

any dependence on the original exogenous intensity function. As a result, we can treat the resulting timestamps
approximately as observations from a Hawkes process with a constant exogenous intensity of 1.

However, it may not always be possible to obtain an exact value of μ(t). In such cases, an approximate value
can be estimated. To achieve this, we first compute the average intensity function λm(t) over a span of n days.
Each trading day i has the intensity function denoted by λi(t), and we have a total of n trading days. Specifically,
we obtain λm(t) as the average over all λi(t): λm(t) = ∑n

i=1 λi(t)/n. In practice, we estimate the empirical λi(t)
by normalizing event counts every 100 milliseconds. Assuming that the true exogenous intensity function μ(t)
follows λm(t), we represent μ(t) as

μ(t) = ν(t)λm(t), (13)

where ν(t) represents the relative exogenous intensity function.
Finally, we define ξi = ∫ ti

0 λm(t)dt which serves as timestamps for a Hawkes process Mt with exogenous
intensity ν(t). The resulting process Mt represents the detrended Hawkes process. In general, ν(t) can be a
constant function. However, Filimonov and Sornette (2015) mention that there may be trading days with sig-
nificant intraday events, making ν(t) deviate significantly from a constant function. Therefore, we model ν(t)
as a piece-wise constant function to account for this effect.

In the next section, we estimate the piece-wise exogenous function and kernel function of theHawkes process
Mt , which corresponds to the detrended time series. We would like to emphasize that we always detrend with
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a one-day background intensity function, but not for other window lengths, although we consider different
sub-samples of the same detrended time series in subsequent sections.

4. Model selection

In this section, we performmodel selection to determine the appropriate parametric form of theHawkes process
in our empirical analysis.

We assume that the exogenous intensity function μ(t) is piece-wise constant, where each segment has the
same length. This approach is similar to the methodology employed by Wheatley, Wehrli, and Sornette (2019)
and Wehrli, Wheatley, and Sornette (2021). Under this assumption, we select the most appropriate parametric
form of the kernel function φ(t) among several candidates, and the optimal number of segments of the exoge-
nous intensity function μ(t), based on the data of all 108 stocks. In Section 4.1, we first adopt a non-parametric
method to estimate the kernel function as the ground truth, and then compare different parametric forms of the
kernel function via residual analysis and BIC. In Section 4.2, we select the optimal number of segments s∗ of the
exogenous intensity function μ(t) across various window lengths by comparing their respective BIC values.

4.1. Kernel selection

We begin by applying the non-parametric method proposed in (Bacry, Dayri, and Muzy 2012) to estimate the
kernel function, which serves as our ground truth.Wemainly rely on the auto-covariance function of theHawkes
process, denoted by v(h)τ , where we take h to be the scale and τ to be the lag. Specifically, we define v(h)τ as follows:

v(h)τ = 1
h
Cov

(
Nt+h − Nt ,Nt+h+τ − Nt+τ

)
.

In practice, we need to discretize the auto-covariance function v(h)τ with respect to τ .We define the discretization
step size of τ as�, and the range of τ as [0, τmax].

We apply the non-parametric method to the mid-price processes of all the stocks in our dataset. Following
Bacry, Dayri, and Muzy (2012), we set the hyper-parameters τmax = 100 and � = h = 0.1. However, unlike
Bacry, Dayri, and Muzy (2012), the assumption of constant exogenous intensity within a trading day is invalid
in our dataset (Wehrli, Wheatley, and Sornette 2021). Therefore, we divide each trading day (after detrending)
into four equal-sized segments,10 and assume that the exogenous intensity is constant within each segment.
We estimate the auto-covariance function for each segment, compute their average over segments, and then
apply the non-parametric method to obtain the kernel function for a single stock. Finally, we use least square
estimation to fit the kernel to a power-law function. Appendix 2 gives the specific non-parametric estimation
algorithm.

Figure 3 shows the estimated Hawkes kernel function for Ping An Bank, which follows a power-law decay
(Bacry, Dayri, and Muzy 2012). We select the fitting interval for the estimated kernel as [0.5, 100] to focus
on fitting the tail. We also find this power-law decay phenomenon in all stocks in our dataset as presented in
Figure A13 in the Appendix.

Bacry, Dayri, andMuzy (2012) show that non-parametric estimation can accurately reflect the general shape
of the kernel function. However, the values and decay rates of the estimated function are greatly influenced
by the selection of hyper-parameters, namely � and τmax.11 Moreover, to estimate the kernel function with
greater precision, it is important to have enough samples with consistent exogenous intensity and an identical
kernel function. In practical scenarios, these conditions are often unmet. As a result, non-parametric methods
can struggle to accurately estimate the endogeneity. To address this issue, we adopt parametric methods and
consider several parametric forms of the kernel function in our model selection process. This approach allows
us to make individual estimates for each sample.

To apply each parametric form of the kernel function in Section 2.1, we assume that the exogenous intensity
function μ(t) is piece-wise constant over four equally long intervals, which is consistent with the previous non-
parametric estimation. Then, we estimate the corresponding parameters by maximum likelihood estimation, as
discussed in Section 2.3.
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Figure 3. The non-parametric estimate of kernel function for Ping An Bank. The hyper-parameters τmax,� and h are specifically configured as
100, 0.1 and 0.1 respectively. The left panel shows the non-parametric estimate, while the right panel shows the Log-Log plot of the left panel. The
black hollows represent the pointswith positive non-parametric estimates and the red hollows represent the pointswith negative non-parametric
estimates in absolute value. The blue line represents theOLS fit ofφ(t) = K(t + c)−p on [0.5, 100], which is performed at the original (not log-log)
scale, and the optimal value of p is approximately 1.23.

Figure 4. Goodness-of-fit analysis of three parametric kernel functions. Each estimation is made over one trading day. Subfigure (a) shows quan-
tile plots of different sequences of {ξi} against the exponential distributionwith rate 1 for exponential law, power-law, and exponential power-law
kernels, using Ping An Bank’s data on Jan. 2nd, 2020. Subfigure (b) shows the histogram of the�BIC’s for all stocks over all trading days. Subfig-
ure (c) shows the estimated power-law kernel and exponential power-law kernel for Ping An Bank on Jan. 2nd, 2020. (a) QQ-plot of residuals. (b)
Histogram of�BIC and (c) Kernel function.

Next, we compare the BIC values of the three kernel functions and perform a residual analysis. The results
are presented in Figure 4(a), which indicates that the residuals associated with the power-law kernel exhibit the
highest similarity with the residual distribution under the null hypothesis (i.e. the exponential distribution with
rate 1).

Across all 108 stocks and all trading days, we calculate the optimal log-likelihood using three kernel func-
tions. Then we subtract the BIC associated with the power-law kernel from the BIC corresponding to the other
two kernels, i.e. �BIC = BICpow − BIC. This �BIC serves as a comparative measure to determine whether a
certain kernel function is more suitable than the power-law kernel. Figure 4(b) shows the histogram of �BIC.
For virtually all samples, the BIC corresponding to the power law-kernel is higher than that of the exponential
kernel.

However, it is difficult to distinguish power-law kernels from exponential power-law kernels definitively. This
challenge may arise from the time resolution of our data being 10 milliseconds, a scale inefficient to capture
reactions tomarket events that occur faster, given the prevalence of high-frequency trading. Figure 4(c) provides
an example of the power-law kernel and the exponential power-law kernel estimated in the same process. The
two kernel functions are almost the same at the tail, and the first 10 milliseconds show the most difference. In
other words, we cannot ascertain the presence of a peak in the kernel function.

To summarize, based on the qualitative observations in Figures 3 and A13, the complexity of the model, and
the slightly better performance of the power-law kernel on both the residual and BIC analyzes, we choose the
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power-law kernel as our kernel function in subsequent analysis. In fact, we have also performed our analysis
using the exponential power-law kernel and found that the empirical results remain almost identical.

4.2. Segments selection

In Section 4.1, wemake the assumption that the exogenous intensity is piece-wise constant on four segments. To
assess the influence of this choice, we identify the optimal number of segments based on the BIC, as suggested
by Wheatley, Wehrli, and Sornette (2019). We find that 3 segments are optimal on average for one trading day.

We begin by introducing some notations. We use T, Nt , and s to denote the window length, the Hawkes
process, and the number of segments, respectively. We use n to denote the total number of stock–day, which
is approximately 50,000. To investigate the optimal number of segments for various window lengths, we per-
form analysis for window lengths of 30 minutes, 1 hour, 2 hours, and 4 hours. For the Hawkes process Nt
in a given window [0,T], we divide the time window evenly into s> 0 segments, namely {[iT/s, (i + 1)T/s] :
i = 0, 1, . . . , s − 1}, and assume that the exogenous intensity is a constant and the kernel function is power-
law within each segment. To find the optimal s, we consider the BIC, as defined in (9), where the number of
parameters np is s+ 3 within this model.

We divide the sample for each trading day into q sub-processes of length T. As discussed in Section 3.2, we
detrend each sub-process using its corresponding background intensity. As a result, we have q × n detrended
sub-processes. For the kth sub-process and s ∈ {1, 2, 3, . . . , 10}, we calculate the BIC value corresponding to the
maximum likelihood estimation, which is denoted by BICT,k,s for T ∈ {30min, 1h, 2h, 4h} and 1 � k � q × n.
Using the BIC value as a measure of model fit, we define the optimal number of segments corresponding to each
sub-process as s∗T,k:

s∗T,k = argminsBICT,k,s. (14)

Because the optimal number of segmentsmay vary depending on the specific characteristics of each sub-process,
we consider the difference in BIC values (�BICT,k,s) between the optimal number of segments for each sub-
process (s∗T,k) and other values of s:

�BICT,k,s = BICT,k,s∗T,k − BICT,k,s. (15)

For a comprehensive assessment of the impacts of varying segment numbers, we derive an aggregate estimate
by calculating the average�BICT,s as:

Average�BICT,s = 1
qn

qn∑
k=1

�BICT,k,s. (16)

Figure 5 summarizes the average�BIC and the optimal values of s. For the half-hour window and one-hour
window, the optimal value of s is 1 based on the average �BIC. According to the histogram in Figure 5, for a
significant portion of processes with a window length of 4 hours, it is enough to divide into four segments for
estimation. This is the reasonwe use a piece-wise exogenous intensity functionwith four segments in Section 4.1.
Furthermore, the optimal number of segments increases linearly with respect to the window length. For a win-
dow length of 4 hours (i.e. the entire trading day), the optimal value for s is 3. Therefore, we fix the number of
segments to be 3 in subsequent analysis.

5. Empirical analysis

In this section, we first compare the classical branching ratio (6) with the internal branching ratio (11) that
measures the endogeneity of the Hawkes process within a window of finite length.

Based on the internal branching ratio we evaluate the endogeneity of the mid-price process for a single stock,
Ping An Bank, under the Hawkes model with a power-law kernel and a piece-wise constant exogenous intensity
function. We also discuss the intraday variations of the endogeneity of Ping An Bank.
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Figure 5. Average�BIC and the histogram of the optimal s in percentage terms. For a specific window length T, the timestamp series used for
each estimation is a sub-process extracted from Ping An Bank’s daily mid-price change process from 2019 to 2020 with a window length of T.
See the text for the specific method of obtaining these sub-processes. The left panel shows the average�BIC with respect to s, corresponding to
distinct window lengths T. The black solid points denote the highest average�BIC for eachwindow length T. The right panel shows the histogram
of theoptimal s (s∗) under differentwindow lengths T. The subplotwithin the right panel shows the average s∗ with respect to thewindow length T.

We then perform a cross-sectional analysis of the estimated internal branching ratio for all stocks using panel
regression. The results show that the internal branching ratio, a price endogeneity measure, is closely related to
classical measures of market efficiency at high frequencies. In addition, the price endogeneity in the Chinese
market is increasing over time.

5.1. Endogeneitymeasures

In this subsection, we use realmarket data to compare the internal branching ratio (11) with the classical branch-
ing ratio (6). We first use the maximum likelihood to estimate the classical branching ratio η,μ(ti)’s and λ(ti)’s,
and then substitute these estimates into (12) to estimate the internal branching ratio.

Figure 6 compares the estimated internal branching ratio η̂in with η̂. In addition, we also compare η̂in with
the finite integral

∫ T
0 φ̂(t)dt, which estimates the expectation of the number of new events generated by an event

in the window [0,T], where φ̂ is the estimated kernel. All of these three variables are estimated for each trading
day of each stock. The findings indicate a strong positive correlation between η̂in and

∫ T
0 φ̂(t)dt. Moreover, when

η̂ is small, η̂ and η̂in are very close. But when η̂ is large, the distribution of η̂in appears to be no longer related
to η̂. These observations indicate that η̂in is more appropriate than η̂ for measuring endogeneity within a finite
interval using practical data.

In conclusion, η̂in effectively captures the proportion of endogenous events within the finite window [0,T].
Hence, in the subsequent analysis, we use the internal branching ratio η̂in rather than the infinite integral η̂ to
measure the price endogeneity.

5.2. Results for a single stock

In this subsection, we estimate the internal branching ratio using data from a single stock, Ping An Bank (stock
code: 000001.SZ), and we focus on the intraday patterns of the internal branching ratio.

Initially, for each trading day (4 hours long), we consider internal branching ratios within the rolling windows
with a step size of 3 minutes and a length of 30 minutes. Importantly, these windows exclude both the morning
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Figure 6. Heatmap of η̂,
∫ T
0 φ̂(t)dt and η̂

in. Using the power-law kernel selected in Section 4 and the piece-wise constant exogenous intensity
with three segments,we conductmaximum likelihood estimation for each tradingday of each stock. Thenweuse the estimated results to calculate
η̂,
∫ T
0 φ(t)dt and η̂

in respectively. The left panel shows a comparison between
∫ T
0 φ(t)dt and η̂

in, while the right panel shows a comparison
between η̂in and η̂. The red lines in both panels are straight lines aligning with the y = x. The shading of each grid indicates the proportion that
the sample within that grid to the total.

Figure 7. The rolling windows to use for estimation. The window length is 30 minutes, and the step size is 3 minutes.

and afternoon periods. This approach leads to internal branching ratios across 62windows of lengthT = 30min.
Figure 7 is a schematic diagram of these windows.

To investigate the intraday pattern of the internal branching ratio, we aggregate the data on the windows of
the same length, irrespective of their trading dates. After that, we use two different methods to estimate a single
internal branching ratio for each time interval: average estimation and aggregated estimation.

For the average estimationmethod, we first obtain the internal branching ratio on each window bymaximum
likelihood estimation, and then calculate an average of these internal branching ratios across the windows to
yield a single internal branching ratio. Specifically, based on the analysis presented in Section 4.2, we assume a
constant exogenous intensity function, μ(t) ≡ μ, and a power-law kernel function (4) in the Hawkes process
model. Let Li,j(μ, η, p, c) denotes the likelihood function of the Hawkes process within the jth window of the
ith trading day, where (η, p, c) are the parameters in the power-law kernel function. We obtain the optimal
parameters (μ, η, p, c)i,j by maximizing the log-likelihood function, namely(

μ̂, η̂, p̂, ĉ
)
i,j = argmaxμ,η,p,cLi,j(μ, η, p, c). (17)

The resulting estimated internal branching ratios form a time series, denoted by {η̂ini,1, η̂ini,2, . . . , η̂ini,62}, for the ith
trading day. We then calculate the average branching ratios for all trading days by computing the arithmetic
mean of the internal branching ratios over the trading days, i.e.

η̄inj = 1
n

n∑
i=1

η̂ini,j , (18)

where n represents the total number of trading days.
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For the aggregated estimation method, we conduct an aggregated maximum likelihood estimation with a
shared branching ratio but varying exogenous intensities along with other kernel function parameters in these
windows. Explicitly, assuming that the branching ratio is fixed for n days, with different exogenous intensities
for each day, based on a particular kernel function parameter, we calculate the log-likelihood of each trading
day with its corresponding exogenous intensity along with other kernel function parameters, and sum them
to obtain an aggregated log-likelihood. Optimizing this aggregated log-likelihood also estimates the market’s
internal branching ratio for a specific time period, that is,

( �̂μ, η̂, �̂p, �̂c
)
j
= argmax

�μ,η,�p,�c

n∑
i=1

Li,j(μi, η, pi, ci), (19)

where Li,j is the same as in (17), and �̂μj, �̂pj and �̂cj are the parameter vectors for each day corresponding to the
jth time period, respectively. It is actually a (3n + 1)-dimensional optimization problem. After the estimation,
we calculate the internal branching ratio η̃inj as a generalization of (11), that is

η̃inj =
∑n

i=1
∑

u,v∈Si,j,u<v π
(i)
u,v∑n

i=1 Ni,j
, (20)

where π(i)u,v is the probability that the vth event originates from the uth event on the ith day, Si,j is the set of events
occurring within the jth period of the ith day, and Ni,j is the count of the elements in the set Si,j.

Figure 8 shows the results of the internal branching ratios estimated by the two methods mentioned earlier,
plotted against themid-points of time intervals.We observe that the aggregated estimation is always higher than
the average estimation. Moreover, the estimated internal branching ratio for each window is generally between
0.65 and 0.9, the average estimate for each period is around 0.79, and the aggregated estimate for each time
interval is around 0.81. Interestingly, if we apply the square root of the number of events in the window, namely√
Ni,j, as weights, and calculate the weighted average of the estimated internal branching ratios over days for

each period, the resulting values exhibit remarkable similarity to the aggregated likelihood estimation. This
suggests that in the aggregated likelihood estimation, the samples with higher internal branching ratios have
greater weights, because these samples have more events.

More importantly, both the average and aggregate estimation results show a U-shaped intraday trend, that is,
the endogeneity tends to be higher at the beginning of themorning and towards the end of the afternoon. This is
similar to the results reported byWehrli,Wheatley, and Sornette (2021) on the E-mini futures contract, and they
claim that this trends arises due to the relatively weak impact of external shocks during these periods. However,
it is worth noting that in our dataset, themarket intensity function λ(t)m ismarkedly high at the beginning of the
morning and is considerably low towards the close of the afternoon, as illustrated in Figure 2. So this situation
does not arise solely because the exogenous intensity is low or high. Instead, we suggest that many numerous
market participants concentrate on trading during these two time periods, leading to a significant increase in
the endogeneity of the market during these two time periods.

5.3. Cross-sectional analysis

In Section 2.4, we introduce the internal branching ratio as an important measure of price endogeneity, which
is related to market efficiency and the rate at which prices absorb external information. In this section, we aim
to answer two key questions:

• What is the relationship between the internal branching ratio and market efficiency, and whether it is
associated with market efficiency at a particular frequency?

• What factors affect the internal branching ratio?

To answer these two questions, we consider measures of market efficiency, volatility, and other control vari-
ables at various frequencies. The literature has proposed several methods to assess market efficiency. Lo and
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Figure 8. Estimate results of all trading days of Ping An Bank. In the given jth window, the figure shows the average, average weighted by the
square root of event number, and 80% confidence interval of the sequence of internal branching ratios {η̂ini,j }ni=1, where i represents the ith day
and n represents the total number of trading days. The figure also shows the aggregated estimates for these days. The x-axis corresponds to the
midpoint of the respective window. The middle part is left blank because we exclude windows involving both the AM and PM periods.

MacKinlay (1988) use the variance ratio to test whether the stock price follows a random walk; Hou and
Moskowitz (2005) propose several price delay measures; Bris, Goetzmann, and Zhu (2007) consider the correla-
tion coefficient between asset returns and lagged market returns. These measures all relate to the second-order
moments of returns. Notably, the variance ratio, due to its straightforward form, has found wide application
in measuring market efficiency (Borges 2010; Chen, Kelly, and Wu 2020; Chow and Denning 1993; Lo and
MacKinlay 1988). We therefore choose this measure to examine how the branching ratio relates to market
efficiency.

Table 2 provides an overview of variables included in the regression analysis. Detailed descriptions of these
variables are presented in Appendix 3. We mainly focus on the variables related to market efficiency, volatility,
and time, and consider other variables as control variables.

These variables of 108 selected stocks for each trading day form a panel dataset. We use panel regression to
derive economic insights from the branching ratio. To mitigate the impact of outliers, we apply winsorization to
all the variables except the time-related ones. Specifically, we replace the values below the 2.5th percentile and
above the 97.5th percentile with the values corresponding to the 2.5th and 97.5th percentiles respectively.

First, we conduct a correlation analysis on several important variables for all trading days for all stocks.
Figure 9 illustrates the correlation heatmap of these selected variables. On the one hand, we focus on the correla-
tion betweenAVR2’s at different frequencies. Specifically, the correlation coefficients betweenAVR3s

2 andAVR5s
2 ,

AVR20s
2 as well as AVR60s

2 amount to 0.63, 0.02 and−0.08, respectively, which are in descending order. This indi-
cates that the market efficiency is highly correlated at similar frequencies, but is uncorrelated or even slightly
negatively correlated at frequencies that diverge significantly. On the other hand, we compare the correlation
between the transformed internal branching ratio and AVR2 at various frequencies. The transformed internal
branching ratio is significantly positively correlated with AVR3s

2 , a high-frequency measure, and is uncorrelated
or negatively correlated with AVR2’s at low frequencies. This observation indicates that the internal branching
ratio is more similar in nature to AVR3s

2 , i.e. the internal branching ratio reflects price efficiency in terms of
absorbing information at high frequencies. Practically, because the estimation of the internal branching ratio is
based on the most refined order data, it intuitively encapsulates the high-frequency market characteristics.

To understand what factors affect the branching ratio and study, in particular, whether it is related to classical
measures of market efficiency, we perform regression analysis on the panel data. We choose the frequencies
of AVRk

2’s, Std
k’s and Skewnessk’s so that the correlation between independent variables is as low as possible.
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Table 2. Variables involved in the correlation and regression analysis. We calculate these variables for each trading day of each stock.

Type Variable Description

Dependent Variable − ln(1 − η̂in) The estimated internal branching ratio, after being
subjected to a logarithm transformation.

Efficiency AVRk2 The 2-period absolute variance ratio of return at frequency
of k.

Volatility Stdk The square root of the variance of the return rate at
frequency of k.

Time Days The number of days counting from Jan. 1st, 2019.
COVID-19 The 0-1 variable indicating whether the date after the

COVID-19, namely after Feb. 3rd, 2020.
Control Variable μ̄scaled The mean of the exogenous intensity function estimated

on the detrended data, which is scaled to themagnitude
of the corresponding intensity before detrending
according to (13).

Mean Spread The average of the difference between the best bid price
and the best ask price on the order book each time a
new order is submitted or canceled.

Illiquidity Ratio The ratio of the absolute return for a stock to trading
volume over one day. This is also known as Amihud ratio
(Amihud 2002).

Skewnessk The skewness of the return rate at frequency of k.
log(Market Cap) The logarithm of the stock’s circulating market

capitalization at the close of the trading day.

Figure 9. The correlation heatmap of − ln(1 − η̂in), μ̄scaled, days, mean spread, illiquidity ratio, log(Market Cap), standard deviations and
skewnesses at frequencies of 3s, 30s, and 300s, and 2-period absolute variance ratios at frequencies of 3s, 5s, 20s, 60s, and 300s.

Precisely, we choose AVR3s
2 , AVR

20s
2 , AVR300s

2 , Std3s,Std300s, Skewness3s and Skewness300s. Considering that our
panel data contains a total of 108 stocks, we incorporate stock fixed effects in our regression model. Specifically,
we use the following regression equation:

− ln(1 − η̂ini,t) = αi +
13∑
j=1

βjXi,t,j + ui,t (21)
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Table 3. Panel regression analysis results of the fixed effect model. We calculate the variables given in Table 2 for all trading days for all stocks. In
the calculation of the internal branching ratio for eachday, the kernel function is a power-law kernel function and the exogenous intensity function
is a piece-wise constant function containing 3 segments, as established in Section 4.2. The panel regression analysis involves the transformed
internal branching ratio, − ln(1 − η̂in), as the dependent variable, while the remaining variables are the treated as independent. ∗ , ∗∗ , and ∗∗∗
indicate significance at the 90%, 95% and 99% levels respectively.

Variable Estimated Coefficient

AVR3s2 0.359∗∗
AVR20s2 −0.058
AVR300s2 −0.104∗∗∗
Std3s 360.970∗∗∗
Std300s 150.580∗∗∗
Days 0.001∗∗∗
COVID-19 0.016
Constant −6.260∗∗∗
μ̄adjusted −12.188∗∗∗
Mean Spread −2.332∗∗∗
Illiquidity Ratio −425.750∗∗∗
Skew3s −0.022∗∗∗
Skew300s −0.001
log(Market Cap) 0.322∗∗∗
Observations 51,097
R2 0.5701
F Statistic 5200.366∗∗∗ (df= 13; 50,976)

Figure 10. The coefficients of AVR2 at frequencies of 3s, 20s and 300s in Fixed effectmodel in Table 3. The light blue shading is the 95%confidence
interval of the coefficients.

where i ∈ {1, 2, . . . , 108} indicates the ith stock, t denotes time, αi is the intercept of the ith stock, βj is the slope
of the jth variable, Xi,t,j is the jth variable of the ith stock at time t, and ui,t is the error term. Table 3 shows the
regression results of (21), which we refer to as the fixed effect model.

Market efficiency. In the regression results, the signs and significance of the coefficients regarding AVR2 vary at
different frequencies. Figure 10 shows that the estimated regression coefficients of AVR2 monotonically decrease
with frequency. This observation aligns with intuition: the internal branching ratio of the Hawkes process
represents the market characteristics at the highest frequency. This interpretation is reflected by the positive
correlation with AVR3s

2 , a high-frequency measure, as well as the lack of significant relationship with AVR20s
2 , a

low-frequency measure. This pattern also corresponds to the findings of the correlation analysis in Figure 9. It
is noteworthy that the branching ratio exhibits a significant negative correlation with AVR300s

2 .
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We conjecture that this phenomenon is primarily driven by the activities of high-frequency traders. When
prices deviate from the random walk at high frequencies as measured by the variance ratio statistic, high-
frequency traders become more active because they derive profits from these short-term price inefficiencies.
Such behaviors reduce pricing errors when measured at low frequencies, making the price more efficient in
absorbing external information. This is also consistent with Brogaard, Hendershott, and Riordan’s (2014) find-
ings that high-frequency traders gain benefits by predicting short-term price changes, reducing pricing errors,
and imposing adverse selection. Our observations support their point of view, but we emphasize that this inter-
pretation is a potential explanation for the observed relationship between the internal branching ratio and
measures of price efficiency.12

Volatility. Variables Std3s and Std300s measure the volatility of the market at high and low frequencies respec-
tively. The regression results show that both of these two variables have a significant positive coefficient. In fact,
the volatility of themarket is consistent with the number of changes in themid-price. Increasedmarket volatility,
reflected in more frequent mid-price changes, tends to elevate the degree of market endogeneity, irrespective of
whether it occurs at low or high frequencies.

Time. In the Chinese market, we find that the branching ratio is significantly increasing over time, which is
consistent with some studies in other markets (Filimonov et al. 2014; Filimonov and Sornette 2012, 2015), while
Hardiman and Bouchaud (2014) find it constant. Furthermore, we also find that the COVID-19 crisis has not
brought a significant impact on the branching ratio, which is also reported by Yu and Potiron (2022). An increase
in the branching ratio is often interpreted as an increase in the proportion of high-frequency strategies that
are based on the incoming orders of other traders (Filimonov and Sornette 2012; Wehrli, Wheatley, and Sor-
nette 2021). The increase in the branching ratio in the Chinese market over time is likely due to the increase in
the proportion of high-frequency trading.

In general, the internal branching ratio measures the endogeneity of the market, which we find to be asso-
ciated with market efficiency to some extent. Higher internal branching ratios are associated with lower levels
of price efficiency in the low-frequency market. Such a relationship may be due to the fact that high-frequency
traders tend to tradewhen the price at high frequency is inefficient. Furthermore, an increase inmarket volatility,
whether at low or high frequencies, leads to an increase in the internal branching ratio. An important discovery
in the Chinese market is that the internal branching ratio is increasing over time, indicating that the market is
becoming less efficient at high frequencies. Meanwhile, the analysis indicates that the COVID-19 crisis has not
brought significant permanent effects to the market.

6. Robustness checks

We conclude the analysis with a series of robustness checks to understand the potential impact of variousmodel-
ing and estimation details on the results. First, we examine the influence of the choice of redistributionmethods
in Section 3 by including a random redistribution method. Second, we investigate how the hyper-parameters
τmax and � in the non-parametric estimation method in Section 4.1 affect the estimation results. Third, we
further examine the optimization method in the non-convex maximum likelihood estimation problem (8).

6.1. Redistribution

Because of the time precision, it is possible for multiple mid-price changes to be marked with the same times-
tamp. As a result, we only have information about the 10ms interval within which the event occurs. To address
this issue, we evenly redistribute the events that occur within the same interval. To test the robustness of this
operation, we randomly select 5 trading days for each stock and redistribute the events randomly according to
the uniform distribution.

Figure 11 gives scatter plots comparing the internal branching ratio using twodistinct redistributionmethods.
The results demonstrate that the estimated internal branching ratios from both redistribution methods are very
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Figure 11. Scatter plots of internal branching ratios obtained by even redistribution and uniform random redistribution.

Table 4. Results of thepower lawfit k(t + c)p , applied to thenon-parametric estimatedkernel underdifferent hyper-parameters for themid-price
changes of Ping An Bank.

τmax � k p c τmax � k p c

10.00 0.05 0.1382 1.1317 0.0626 100.00 0.05 0.1332 1.1788 0.0698
0.07 0.1411 1.1807 0.0763 0.07 0.1368 1.2265 0.0841
0.09 0.1425 1.2040 0.0816 0.09 0.1386 1.2497 0.0900
0.10 0.1429 1.2109 0.0824 0.10 0.1390 1.2567 0.0910
0.12 0.1429 1.2176 0.0808 0.12 0.1393 1.2644 0.0900
0.20 0.1394 1.2146 0.0560 0.20 0.1365 1.2654 0.0679
0.50 0.1423 1.3221 0.0000 0.50 0.1373 1.3511 0.0000

50.00 0.05 0.1337 1.1721 0.0687 200.00 0.05 0.1331 1.1821 0.0705
0.07 0.1371 1.2197 0.0828 0.07 0.1367 1.2297 0.0848
0.09 0.1389 1.2427 0.0885 0.09 0.1385 1.2530 0.0908
0.10 0.1393 1.2496 0.0894 0.10 0.1390 1.2600 0.0919
0.12 0.1395 1.2569 0.0882 0.12 0.1393 1.2679 0.0910
0.20 0.1365 1.2563 0.0652 0.20 0.1366 1.2699 0.0695
0.50 0.1379 1.3465 0.0000 0.50 0.1381 1.3685 0.0066

similar. This indicates that the choice of the redistribution method has no significant impact on the estimation
of the internal branching ratio η̂in.

6.2. Non-parametric estimation

Bacry, Dayri, andMuzy (2012) show that the choice of the hyper-parameters� and τmax will affect the estimated
results. In this part, we perform some experiments to show how the hyper-parameter choices influence our
non-parametric estimation results.

Specifically, We estimate the kernel function of the Ping An Bank using the same method in Section 4.1
but with different hyper-parameters. Table 4 displays the hyper-parameters we choose and the corresponding
estimate results. The results show that the power exponent p of the estimated kernel function tends to increase
with larger discretization step size� and window length τmax. Nevertheless, regardless of the parameter choices,
we will always get a kernel function with power law decay.
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6.3. Maximum likelihood estimation

The non-convex nature of maximum likelihood estimation (MLE) discussed in Section 4.1 for power-law or
exponential power-law kernel requires careful optimization. As suggested by numerous existing researches
(Bacry et al. 2016; Kirchner and Bercher 2018; Lee and Seo 2017; Yang et al. 2018), the BFGS algorithm performs
well in maximizing the log-likelihood function of Hawkes process. In our optimization problem, the variables
have bound constraints, so we use the L-BFGS-B algorithm, which extends the BFGS algorithm and is imple-
mented in the Python SciPy library. When applying the L-BFGS-B algorithm, we calculate the gradients of the
log-likelihood accurately and approximate the Hessian matrix using the algorithm. The stopping criteria are set
to achieve a precision of five decimal points.

The existing literature (Filimonov and Sornette 2015; Rizoiu et al. 2017) has also reported local maxima
and regions of shallow gradients in the log-likelihood. To mitigate the impact of these issues on our results, we
randomly select several different initial values for estimation, which ensures that the result is actually the global
maximum rather than a local maximum or in a flat region. Additionally, it is necessary to test the robustness of
this procedure. In the following part, we demonstrate that the empirical log-likelihood function has a unique
local maximum, which is also global.We also find that the log-likelihood corresponding to the power-law kernel
is flat only where p/c is large.

Filimonov and Sornette (2015) define the cost function of the exponential power-law kernel as

S(τ , ε|t1, t2, . . . , tN) = min
η, �μ

(− ln L(η, �μ, τ , ε|t1, t2, . . . , tN))

and provide a surface graph of this function. They indicate that, under the exponential power-law kernel, S can
have two local minima. Therefore, when conducting MLE, it is necessary to pay attention to the initial values.
We follow their approach to study the property of the cost function. To explain the cost function, we need to first
introduce a proposition, which states that the log-likelihood function is convex with respect to some variables.
This theorem helps us to observe the shape of the log-likelihood function.

Proposition 6.1: Under the same notations in Proposition 2.1, − ln L is convex with respect to η,μ0, . . . ,μp−1.

Proof:

ln L = −
∫ T

0

(
μ(t)+ η

∑
ti<t

h(t − ti)

)
dt +

NT∑
i=1

ln

⎛
⎝μ(ti)+ η

∑
tj<ti

h(ti − tj)

⎞
⎠

= −
∫ T

0
μ(t)dt − η

NT∑
i=1

∫ T

ti
h(t − ti)dt +

NT∑
i=1

ln

⎛
⎝μ(ti)+ η

∑
tj<ti

h(ti − tj)

⎞
⎠

= −
p−1∑
k=0

μiT
p

− ηH0 +
p−1∑
k=0

∑
ti∈

[
kT
p , (k+1)T

p

) ln (μk + ηHi) ,

where

H0 =
NT∑
i=1

∫ T

ti
h(t − ti)dt, Hi =

∑
tj<ti,1�j�NT

h(ti − tj), i = 1, . . . ,NT .



THE EUROPEAN JOURNAL OF FINANCE 969

Hence,

∂2 ln L
∂μk∂μl

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
ti∈

[kT
p

, (k+1)T
p

) −1
μk+ηHi

, k = l,

0, k 	= l.

∂2 ln L
∂η2

=
p−1∑
k=0

∑
ti∈

[
kT
p , (k+1)T

p

)
−H2

i
μk + ηHi

,
∂2 ln L
∂η∂μk

=
∑

ti∈
[
kT
p , (k+1)T

p

)
−Hi

μk + ηHi
.

For all k ∈ {0, 1, . . . , p}, we have
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−∂2 ln L
∂η2

−∂2 ln L
∂η∂μ0

· · · −∂2 ln L
∂η∂μk−1

−∂2 ln L
∂η∂μ0

−∂2 ln L
∂μ2

0
· · · 0

...
...

. . .
...

−∂2 ln L
∂η∂μk−1

0 · · · −∂2 ln L
∂μ2

k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
k−1∑
l=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝ ∑

ti∈
[
lT
p ,
(l+1)T

p

)
H2
i

μl + ηHi

∑
ti∈

[
lT
p ,
(l+1)T

p

)
1

μl + ηHi
−

⎛
⎜⎜⎝ ∑

ti∈
[
lT
p ,
(l+1)T

p

)
Hi

μl + ηHi

⎞
⎟⎟⎠

2⎞
⎟⎟⎠

·
∏
s	=l

∑
ti∈

[
sT
p , (s+1)T

p

)
1

μs + ηHi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� 0(By Cauchy’s inequality).

Thus − ln L is convex with respect to η,μ0, . . . ,μp−1. �

Thus, if we fix h(t), there exists a unique set ofμ’s and η such that ln L reaches its maximum under h(t). This
allows us to easily calculate the cost function of kernel φ(t) numerically, that is:

S(h) = min
η, �μ

(− ln L).

As for the power-law kernel, h is determined by two variables c and p. Consequently, we are able to construct
a graph of the function S. For different trading days, the function graphs of S are very similar, and we give an
example of one trading day in Figure 12. It can be seen that S has a unique local minimum. Notably, S is flat
in the upper left part of Figure 12, because in such case p/c is large and η is estimated to be 0, namely that the
kernel vanishes. This makes the problem estimate μ only. To avoid this situation, we let p/c � 1 when choosing
initial values.

After the above processing and discussions, we conclude that our maximum likelihood estimation is robust.
Meanwhile, our estimation results also show that under different initial values, our maximum likelihood
estimation always converges to the same point, and the corresponding kernel function at this point is reasonable.
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Figure 12. Surface of S(h) calculated by the detrended mid-price changes of Ping An Bank on Feb. 14th, 2019. The vertical red line indicates the
global minimum point.

7. Conclusion

In this article, we use a univariate Hawkes process to model the high-frequency mid-price changes of stocks
traded on the Shenzhen Stock Exchange in China. Our analysis reveals that the kernel function of price changes
in the market follows a power-law decay. We empirically measure the endogeneity within a finite window by the
internal branching ratio. In addition, our empirical analysis of Ping An Bank shows that the branching ratio has
a U-shape intraday pattern, and that high-frequency price changes have significant endogeneity.

We apply our methodology to 108 individual stocks and compare their internal branching ratios cross-
sectionally. The results suggest that higher internal branching ratios are associated with lower levels of price
efficiency at high frequencies, but higher levels of price efficiency at low frequencies. We conjecture that this is
driven by high-frequency trading activities because the market is relatively more inefficient at high frequencies.
Furthermore, we find that market volatility will increase the internal branching ratio. Moreover, in the Chinese
market, the endogeneity is growing over time and COVID-19 has not brought a significant permanent influence
on endogeneity.

In terms of future directions, for the modeling of the kernel function, it is worthwhile to construct a power-
law decaying kernel function whose corresponding log-likelihood is convex or has a unique maximum point
to make the parameter estimation results more credible. In addition to kernel functions, one can also adopt a
more complexmodel of exogenous intensity to capture the external event shocks. Furthermore, we only consider
univariate Hawkes processes in this article. If we treat mid-price increases and decreases as distinct classes of
events, we canmodel them using amultivariate Hawkes process. Similarly, events can also be defined as different
orders on the order book. These are important future directions for modeling improvements.

Finally, our study is only a first step towards understanding the microstructure and mechanism of high-
frequency information processing in the Chinese market, and relevant research for emerging markets in this
direction, in general, is still lacking.

Notes

1. For discussions on this topic, see, for example, Filimonov and Sornette (2012, 2015), Hardiman, Bercot, and Bouchaud (2013),
Filimonov et al. (2014), Wheatley, Wehrli, and Sornette (2019), and Wehrli, Wheatley, and Sornette (2021).
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2. According to data fromWorld Bank (https://data.worldbank.org), as of 2020, the total value of China’s stockmarket has climbed
to a record high of more than USD 12.2 trillion, making it the second-largest in the world after that of the US.

3. Recent empirical evidence shows that the world has started to move from a unipolar to a multipolar financial system in which
China plays an increasingly central role (Billio et al. 2022; McKibbin and Fernando 2021).

4. See, for example, Z. Li et al. (2018) and Gao and Ding (2019).
5. Available at: http://www.szsi.cn/cpfw/overseas/market/historical/.
6. CSI 300 is the Chinese equivalent of S&P 500 and it contains 300 securities with large market capitalization and good liquidity.

More details are available at https://www.csindex.com.cn/#/indices/family/detail?indexCode= 000300.
7. This includes January 9th, March 14th, and March 15th, 2019.
8. The continuous bidding period for each trading day is from 9:30–11:30 am and 1:00–2:57 pm, which amounts to a total of 3

hours and 57 minutes. To make the morning and afternoon sessions symmetrical for convenience purposes, we expand the
afternoon session to 2 hours and simply record the length of a day’s trading time as four hours. The last three-minute of the
trading day, therefore, do not contain any events. This choice does not bias subsequent estimates because we have detrended
the process.

9. Specifically, we redistribute the n events with the same timestamp at t, t +�/n, t + 2�/n, . . . , t + (n − 1)�/n, where � =
10ms is the resolution of our time measurements. Here we adopt a deterministic redistribution approach to improve the repro-
ducibility of our results. In several studies (Filimonov and Sornette 2012, 2015; Hardiman, Bercot, and Bouchaud 2013; Wehrli,
Wheatley, and Sornette 2021), the event timestamps are distributed randomly in each interval. In Section 6.1, we verify that our
approach leads to very similar estimation results compared to the random redistribution method.

10. According to the selection of the number of segments later in Section 4.2, it is sufficient to divide a day into four segments for
estimation.

11. Section 6.2 provides an overview of the impact of hyper-parameter selection on estimation results.
12. To verify that high-frequency traders are driving this phenomenon, one needs transaction-level data with labels of high-

frequency traders, which is beyond the scope of this article.
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Its partial derivatives are

∂φ(t)
∂η

= pcp(t + c)−1−p,

∂φ(t)
∂p

= ηpcp(t + c)−1−p (1 + p ln c − p ln (x + c)
)
,

∂φ(t)
∂c

= ηpcp−1(t + c)−2−p (p(t + c)− c(1 + p)
)
.

Let
∫ t2
t1 φ(t)dt = �(t1, t2), and�(t) = �(t,∞), then

�(t) = ηcp(t + c)−p,

�(t1, t2) = �(t1)−�(t2),

Its partial derivatives are

∂�(t)
∂η

= �(t)
η

,

∂�(t)
∂p

= �(t)(ln c − ln (t + c)),

∂�(t)
∂c

= ηpcp−1ηcpp(t + c)−1

(t + c)p
= �(t) · pt

c(t + c)
.

Define

H(s; η, p, c) = ηpcpϕ′ϕp

�(p + 1)ecϕ
, (A2)

where ϕ is a function of s. We have ∫ ∞

0
e−ϕtH(s; η, p, c)ds =

∫ ∞

0

ηpcpϕpe−(c+t)ϕ

�(p + 1)
dϕ = φ(t). (A3)

Its partial derivatives are

∂H
∂η

= pcpϕ′ϕp

�(p + 1)ecϕ
,

∂H
∂p

= ηcpϕ′ϕp
(
1 + p ln (cφ)− pψ(p + 1)

)
�(p + 1)ecϕ

,

∂H
∂c

= ηp
(
pcp−1 − cpϕ

)
ϕ′ϕp

�(p + 1)ecϕ
.

From (A3), we give the following discretization algorithm, which is firstly given by Ogata, Matsuúra, and Katsura (1993). Taking
δ = 1/16 and considering all i’s in {0, 1, . . . , 18 × 16}, we calculate the following variables in turn:

si = −9 + δi

ϕi = esi−e−si ,

logϕi = si − e−si ,

ϕ′
i = esi−e−si (1 + e−si

)
,

logϕ′
i = si − e−si + log

(
1 + e−si

)
,

Hi = δηpcpϕ′
iϕ

p
i

�(p + 1)ecϕi
.

Hence the discretized counterpartsHi approximate the continuous functionH. According to (A3), the multiplication ofHi with the
exponential functions eφit and subsequent summation provide an approximation of φ(t). Through a recursive calculation of each
exponential function eϕi t individually, we establish a method for recursively computing φ(t). It should be noted that the values of p
and c will affect the precision of approximation. In practice, we limit the range of p and c to the interval [0, 100], which is sufficient
in our data. Such boundaries ensure that the optimization does not converge to the wrong point due to excessive approximation
error.
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Appendix 2. Non-parametric estimation
In this section, we outline a non-parametric approach for estimating the kernel function (Bacry, Dayri, and Muzy 2012).
Additionally, we present the results of the non-parametric estimation of the kernel function for each individual stock.

First, we introduce some necessary notations. The Laplace transform of a function, ft , is denoted by

f̂z =
∫

R

e−zt ftdt,

and the convolution of two functions A and B is denoted by

A ◦ Bt =
∫

R

AsBt−sds.

The auto-covariance function of the Hawkes process is denoted by v(h)τ , where we take h as the scale and τ as the lag. Specifically,
we define v(h)τ as:

v(h)τ = 1
h
Cov

(
Nt+h − Nt ,Nt+h+τ − Nt+τ

)
.

Moreover, we let φ(◦n)t represent the nth auto-convolution of φ, and define�t = ∑∞
n=1 φ

(◦n)
t . The following equation helps compute

the function �̂z from the auto-covariance function v(h):

∣∣∣1 + �̂z

∣∣∣2 = ĝ(h)z λ̄

v̂(h)τ
, (A4)

where g(h)t is defined as:

g(h)t =

⎧⎪⎨
⎪⎩
1 − |t|

h
, t ∈ [−h, h],

0, otherwise,

and λ̄ = μ
1−η = E[Nt]

t , where E[Nt] is the expected value of Nt . Substituting this �̂ into the equation below yields the Fourier
transform of φ, namely φ̂:

φ̂iω = 1 − e− log |1+�iω |+iH
(
log

∣∣∣1+�̂iω

∣∣∣), (A5)

whereH refers to the Hilbert transform andω is a real number representing frequency. Then we apply the inverse Fourier transform
on φ̂iω and obtain φt .

Next, we introduce the discrete algorithm corresponding to the non-parametric estimation method in Bacry, Dayri, and
Muzy (2012):

(1) First we take fixed positive real numbers�, h and τmax such that

K ≡ τmax

�
∈ N,

For the timestamp sequence {ti}, we calculate its self-covariance sequence {v(h)k�}|k|�K at scale h, which is defined as

v(h)τ = 1
h
Covt

(
Nt+h − Nt ,Nt+h+τ − Nt+τ

)
= 1

h
(
Et

((
Nt+h − Nt

) (
Nt+h+τ − Nt+τ

)) − (�h)2
)
,

where� = Et (λt) = Et(dNt)
dt .
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In numerical calculation, considering the set of all timestamps as T , with the length of window being T, then the empirical
estimates of v(h)τ ’s are obtained as follows:

v(h)τ = 1
h (T − τ − h)

∫ T−τ−h

0

(∫ t+h

t
dNs

)(∫ t+τ+h

t+τ
dNs

)
dt −�2h

= 1
h (T − τ − h)

∫ T−τ−h

0

∑
t1∈T

t�t1�t+h

∑
t2∈T

t+τ�t2�t+τ+h

1dt −�2h

= 1
h (T − τ − h)

∑
t1,t2∈T

t2−t1∈[τ−h,τ+h]

min {τ + h − (t2 − t1), (t2 − t1)− (τ − h)}

−�2h,

where� = NT
T .

(2) Then we compute the discrete Fourier transform of v(h):

V(h)k ≡
K∑

n=−K
v(h)n� · e− 2π i

2K+1 kn,

and obtain the sequence

V(h)−K ,V
(h)
−K+1, . . . ,V

(h)
K .

(3) Defining

∣∣∣1 + �̂z

∣∣∣ =
+∞∑
n=1

φ̂nz = φ̂z

1 − φ̂z
,

we can prove that

∣∣∣1 + �̂iω

∣∣∣2 = v̂(h)iω

λ̄ĝ(h)iω

,

where λ̄ = μ
1−η = ENt

t , which represents the average intensity, and

g(h)t =

⎧⎪⎨
⎪⎩
1 − |t|

h
, −h < t < h,

0, otherwise.

The discrete Fourier transform of g(h)t is

G(h)k ≡
K∑

n=−K
g(h)n� · e− 2π i

2K+1 kn.

Thus we can calculate

∣∣∣1 + �̂iω

∣∣∣ =
√√√√ V(h)k

λ̄G(h)k

,

where

ω = 2kπ
(2K + 1)�

, |k| � K.

(4) The Fourier transform of the kernel function φt , defined as φ̂iω , satisfies that

φ̂iω = 1 − e− log
∣∣∣1+�̂iω

∣∣∣+iH
(
log

∣∣∣1+�̂iω

∣∣∣),
whereH represents the Hilbert transform, and ω ∈

{
2kπ

(2K+1)�

∣∣∣ |k| � K
}
. Hence the Fourier transform of φt can be calculated.
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(5) Finally, we compute the inverse Fourier transform:

φk� = 1
2K + 1

K∑
n=−K

φ̂iωn · e 2π i
2K+1 kn

(
ωn = 2nπ

2K + 1

)
.

The kernel function, φτ , where τ ∈ {k�| |k| � K}, is obtained. However, it is worth noting that the φ(0) obtained here is
actually (φ(0+)+ φ(0−))/2. The true estimate of φ(0+) is 2φ(0) because causality dictates that φ(0−) = 0. Therefore, φ(0)
in our estimation results are all multiplied twice to get the true value.

Figure A13 illustrates the non-parametric estimation results of all 108 stocks.

Appendix 3. Variables in regression
In this section, we provide a detailed explanation of the variables discussed in Section 5.3.

A.1 Dependent variable
The dependent variable in the regression is the internal branching ratio. Because the internal branching ratios are bounded in the
interval [0, 1] and are often very close to 1, we transform the internal branching ratio using − ln(1 − ηin) in our analysis.

Figure A13. The non-parametric estimate of the kernel function for each of the 108 stocks. The hyper-parameters τmax,� and h are specifically
configured as 100, 0.1 and 0.1 respectively. In each sub-panel, the hollow points show the estimated kernel function with their corresponding
stock codemarked in the legend, and the blue line is the OLS fitting curve ofφ(t) = K(t + c)−p on t ∈ [0.5, 100], which is the same as in Figure 3.
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A.2 Return sequence
We record the return sequence of stock s on day d at frequency k as

r(k)s,d,i = Ps,d,ik − Ps,d,(i−1)k

Ps,d,(i−1)k
,

where i ∈ {1, 2, . . . ,T/k}, T is the trading hours, namely 4 hours, and Ps,d,t is the stock price of stock s on day d at time t.

A.3 Mean spread
We collect the the best bid price and the best ask price sequences in the order book of stock k for day d as {bi}Ni=1 and {ai}Ni=1
respectively, where i is the ordinal number of the order book update and N is the total number of updates to the order book. Then
we calculate the mean spread of stock k on day d as

Mean Spread = 1
N

N∑
i=1

(ai − bi) .

The mean spread serves as an indicator of market liquidity, with a lower value indicating higher market liquidity.

A.4 Variance of return
The variance of return of stock s on day d at frequency q is defined as

(Variance of Return)(k) = Var
(
r(k)s,d,i

)
,

where the variance is taken over i = 1, 2, . . . ,T/k. This variable measures market volatility, with higher values indicating greater
volatility. Because of the magnitude of this variable, we use its square root as the independent variable, denoted as the standard
deviation:

Stdk =
√
(Variance of Return)(k).

A.5 Illiquidity ratio
The illiquidity ratio of stock s on day d is defined as

Illiquidity Ratio =
∣∣rs,d∣∣
Vs,d

where rs,d = Ps,d/Ps,d−1 − 1, Ps,d is the close price of stock s on day d and Vs,d is the trading volume of stock s on day d in millions
of yuan.

A.6 Absolute variance ratio
The j-period variance ratio of a sequence {ui} is defined as

(Variance Ratio)j = Var
(
ut + ut−1 + · · · + ut−j+1

)
jVar (ut)

.

In this study, we specifically consider the 2-period variance ratio of the return {r(k)s,d,i}, that is

(Variance Ratio)(k)2 =
Var

(
r(k)s,d,i + r(k)s,d,i−1

)
2Var r(k)s,d,i

.

According to the efficient market hypothesis (EMH), when themarket is strongly efficient, the price sequence behaves like a random
walk, leading to a variance ratio close to 1. Hence the 2-period absolute variance ratio at frequency k, namely

AVR(k)2 =
∣∣∣1 − (Variance Ratio)(k)2

∣∣∣,
measures the market efficiency to some extent.
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A.7 Skewness
The skewness of return of stock s on day d at frequency q is defined as

(Skewness of Return)(k) =
E

(
r(k)s,d,i

)3 −
(
E r(k)s,d,i

)3
(
Var r(k)s,d,i

) 3
2

,

where the expectation and variance are taken over i = 1, 2, . . . ,T/k. This variable provides insight into the asymmetry and shape
of the return distribution.
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