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Abstract

The nonlinear two-time-scale stochastic approximation is
widely studied under conditions of bounded variances in
noise. Motivated by recent advances that allow for variabil-
ity linked to the current state or time, we consider state- and
time-dependent noises. We show that the Lyapunov function
exhibits polynomial convergence rates in both cases, with
the rate of polynomial delay depending on the parameters
of state- or time-dependent noises. Notably, if the state noise
parameters fully approach their limiting value, the Lyapunov
function achieves an exponential convergence rate. We pro-
vide two numerical examples to illustrate our theoretical find-
ings in the context of stochastic gradient descent with Polyak-
Ruppert averaging and stochastic bilevel optimization.

1 Introduction
Stochastic approximation (SA) was initially introduced by
Robbins and Monro (1951) to find the root of an unob-
served function operator. Specifically, it aims to approxi-
mate the solution of f(x) = 0 under noisy observations
f(xk) + ξk. This method has been widely adopted in differ-
ent areas including stochastic optimization, machine learn-
ing, and reinforcement learning (RL); see, for example, Sut-
ton, Szepesvári, and Maei (2008); Ermoliev (2009); Borkar
(2009); Sutton et al. (2009); Pham (2010); Bottou, Cur-
tis, and Nocedal (2018); Xu, Zou, and Liang (2019); Lan
(2020); Wu et al. (2020); Khodadadian et al. (2022).

Traditional single-time-scale SA faces challenges in com-
plex applications, and the two-time-scale SA was proposed
by Ermoliev (1983) and developed by Borkar (1997) to man-
age complex processes with both linear and nonlinear up-
date functions. We define the fast-scale as xk ∈ Rd1 and
the slow-scale as yk ∈ Rd2 , with unknown update func-
tions f : Rd1 × Rd2 → Rd1 and g : Rd1 × Rd2 → Rd2 .
f(xk, yk) + ξk and g(xk, yk) + ψk represent their noisy
observations, respectively. We consider the following two-
time-scale process:

xk+1 − xk = −αk[f(xk, yk) + ξk],

yk+1 − yk = −βk[g(xk, yk) + ψk],
(1)
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where {ξk} and {ψk} are martingale differences with de-
creasing sequences of αk and βk. It fits a dynamical system:

ẋ = −f(x, y),
ẏ = −g(x, y). (2)

The goal of a stochastic two-time-scale approximation
is to control the sequence so that it converges to a goal
(x∗, y∗). Because the two variables xk and yk interact with
each other, their convergence behavior differs from that of a
single variable. Typically, to ensure the convergence across
both fast and slow scales, the learning rates αk and βk are
chosen to satisfy αk ≫ βk (Konda and Tsitsiklis 2004). Un-
der certain assumptions, they are set to a special polyno-
mial order of magnitude, as discussed in Doan (2022). With
stricter conditions on functions f and g, the ratio of αk and
βk can be fixed, leading to convergence degenerating into a
single-time-scale scenario (Shen and Chen 2022).

It is subtle to determine the relationship between two
timescales and their learning rates αk and βk. Our work
seeks an explicit relationship between the choice of or-
der of magnitude under certain conditions. Moreover, in
many applications, the stochastic term is not bounded. We
achieve a faster convergence rate ranging from O

(
k−2/3

)
to O (k−∞)—and even an exponential rate of O

(
e−ϵk

)
in

certain cases—with different state noise parameters δij and
time noise parameters γi. Here O(·) indicates that the term
is dominated by c× · with constant c as k → ∞.

Motivating Applications
Two-time-scale SA is widely adopted in many algorithms
because it can precisely describe the relation between vari-
ables and achieve fast convergence. We are motivated by two
algorithms, stochastic gradient descent (SGD) with Polyak-
Ruppert averaging and stochastic bilevel optimization.

SGD with Polyak-Ruppert averaging. In order to mini-
mize a function f with only noisy observations of its gradi-
ent, Ruppert (1988) and Polyak and Juditsky (1992) intro-
duced SGD with Polyak-Ruppert averaging where

xk+1 − xk = −αk(∇F (xk) + ξk),

yk+1 − yk = −βk(yk − xk).
(3)

This algorithm has the form of two-time-scale SA (1) with
f(x, y) = ∇F (x) and g(x, y) = y − x.
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Stochastic bilevel optimization. Colson, Marcotte, and
Savard (2007) provides a review of bilevel optimization,
which focus on solving

min
y∈Rd2

l(y) := G(x∗(y), y)

s.t. x∗(y) := argmin
x∈Rd1

F (x, y),
(4)

where F (x, y) and l(x) are called inner and outer objective
functions, respectively. With only noisy observations of gra-
dients and Hessian matrices, Shen and Chen (2022) apply
the two-time-scale (1) where

f(x, y) = ∇xF (x, y),

g(x, y) = ∇yG(x, y)

−∇2
yxF (x, y)[∇2

xxF (x, y)]
−1∇xG(x, y).

(5)

To accelerate their convergence rate, we consider the noisy
term under various conditions. For more details of the ex-
periment, see Section 5.

Related Works
Two-time-scale SA convergence was initially introduced by
Borkar (1997). The convergence rate in the linear case has
been established by Konda and Tsitsiklis (2004), where
β
−1/2
k (yk − y∗) converges to a normal distribution. Kaledin

et al. (2020) established a convergence rate with both martin-
gale and Markovian noises. In these studies, the linear two-
time-scale SA achieves a convergence rate of O

(
k−1

)
.

For the nonlinear case that we focus on, Doan (2022)
sets a baseline convergence rate of O

(
k−2/3

)
when f

has a strongly monotonic property. A stronger smoothness
condition leads to a single-time-scale convergence rate of
O
(
k−1

)
, as shown in Shen and Chen (2022). Recently,

Hu, Doshi, and Eun (2024) established a central limit the-
orem for convergence with Markov noises, while Han, Li,
and Zhang (2024) investigated the case with local linearity,
achieving convergence rates of O (αk) and O (βk). Doan
(2024) studied a variant in which f and g have a special
form, also achieving a convergence rate of O

(
k−1

)
.

In cases without strong monotonicity, Shen and Chen
(2022) and Zeng, Doan, and Romberg (2024) show differ-
ent convergence rates under certain smoothness conditions.

In the field of SA, Ilandarideva et al. (2023) and
Karandikar and Vidyasagar (2023) recently introduced a
general noise assumption termed ‘state-dependent noise’.
We focus on specific cases of their assumptions, which are
connected with the ‘overparametrized model’ discussed in
Sebbouh, Gower, and Defazio (2021). In this particular case,
E[∥ξk∥2] → 0 as xk → x∗, indicating that the model is over-
parametrized and has no uncertainty.

Contribution
By requiring that martingale differences {ξk} and {ψk} have
decreasing variances with respect to state xk and yk with
parameters δij , or time k with parameters γi, we are able to
improve the convergence rate of O

(
k−2/3

)
in Doan (2022)

and O
(
k−1

)
in Shen and Chen (2022).

More importantly, our work provides novel insights into
understanding the gap between stochastic and deterministic
two-time-scale approximations. We show explicitly how the
convergence rate depends on the parameters δij or γi by in-
troducing a linear programming formm(x). In the proof, we
propose a novel technique based on Bernoulli’s inequality
for balancing coefficients under different parameters. Sur-
prisingly, we find that there could be a convergence rate of
O (k−∞) for both parameters, and even an exponential rate
of O

(
e−ϵk

)
when the parameter δij is equal to 1.

Outline
Section 2 formulates the problem and defines notations.
Sections 3 and 4 demonstrate theoretical results on con-
vergence rates under state-dependent and time-dependent
noises, respectively. Section 5 conducts numerical exper-
iments. Section 6 concludes. The supplementary material
provides proofs of all theoretical results (Appendix A) and
figures of numerical experiments (Appendix B).

2 Problem Setup
In this section, we introduce several assumptions and estab-
lish several basic lemmas for convergence analysis. Gener-
ally, these assumptions are set to ensure appropriate proposi-
tions of update functions and steady convergence of the two-
time-scale SA. Assumptions 1–3 below are commonly used
in previous research (Doan 2022; Shen and Chen 2022).
However, Assumptions 4–6 introduced here shed light on a
new aspect of the noise term, which will be discussed later.

Assumptions
We assume that there is a unique solution (x∗, y∗) s.t.

f(x∗, y∗) = 0,

g(x∗, y∗) = 0.
(6)

Assumption 1. Given y there exists an operator λ such that
x = λ(y) is the unique solution of

f(λ(y), y) = 0. (7)

Suppose λ is Lipschitz continuous with respect to constant
Lλ,

∥λ(y1)− λ(y2)∥ ≤ Lλ∥y1 − y2∥. (8)

Given a fixed y, this assumption guarantees a unique equi-
librium solution λ(y) of x, which is the unique update target
of x. Moreover, the Lipschitz smoothness of λ ensures that
the update target of x does not change significantly when
y changes. These two properties of λ(y) will be key when
dealing with the differences among x, λ(y), and x∗.
Assumption 2. f is Lipschitz continuous with positive con-
stant Lf , i.e. ∀x1, x2, y1, and y2,

∥f(x1, y1)− f(x2, y2)∥ ≤ Lf (∥x1 − x2∥+ ∥y1 − y2∥),
(9)

and f is strongly monotone w.r.t x when y is fixed, i.e. there
exists a constant µf > 0,

⟨x1 − x2, f(x1, y)− f(x2, y)⟩ ≥ µf∥x1 − x2∥2. (10)
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With Lipschitz continuity and strong monotonicity of f ,
the update of x is controlled to be close to its target. This can
be replaced by weaker requirements when only considering
linear two-time-scale SA convergence, as shown in Konda
and Tsitsiklis (2004) and Kaledin et al. (2020).

Assumption 3. The operator g(·, ·) is Lipschitz continuous
with constant Lg , i.e. ∀x1, x2, y1, and y2,

∥g(x1, y1)− g(x2, y2)∥ ≤ Lg(∥x1 − x2∥+ ∥y1 − y2∥).
(11)

Moreover, g is 1-point strongly monotone w.r.t y∗, i.e. there
exists a constant µg > 0 such that

⟨y − y∗, g(λ(y), y)⟩ ≥ µg∥y − y∗∥2. (12)

For g, similar requirements are necessary to guarantee
the convergence of y, where the strong monotonicity of g
is directly related to the final solution y∗. This condition
is widely used in the literature on nonlinear two-time-scale
studies due to the non-linear nature of the problems in-
volved. Note that strong monotonicity is a weaker condition
than strong convexity and covers more application scenar-
ios.

To better illustrate the update process, we introduce two
residual variables:

x̂k = xk − λ(yk), (13)
ŷk = yk − y∗. (14)

These variables represent the differences between xk, yk,
and their respective update targets λ(yk) and y∗. We will
show that the residual variables decrease to 0 as k → +∞
when investigating the Lyapunov function.

In the context of state- or time-dependent SA, the vari-
ance of the stochastic term can be a function of state or time
(Karandikar and Vidyasagar 2023), rather than being sim-
ply bounded. We formulate the following assumptions and
introduce parameters δij and γi.

Assumption 4. We denote by Qk the filtration containing
all the history generated by up to the iteration k, i.e.,

Qk = {x0, y0, ξ0, ψ0, ξ1, ψ1, . . . , ξk, ψk}, (15)

where {ξk}k≥0 are independent random variables with zero
mean and bounded variances a.s., and so {ψk}k≥0 are.
Specifically, there exist Γ11 and Γ22 such that variances can
be controlled as follows almost surely,

E[∥ξk∥2|Qk−1] ≤ Γ11∥x̂k∥2δ11 + Γ12∥ŷk∥2δ12 , (16)

E[∥ψk∥2|Qk−1] ≤ Γ21∥x̂k∥2δ21 + Γ22∥ŷk∥2δ22 . (17)

where δ11, δ12, δ21, and δ22 are in [0, 1). Meanwhile, denote
∆ij = 1− δij for all i, j ∈ {1, 2}.

Assumption 5. {ξk}k≥0 and {ψk}k≥0 are martingale se-
quences similarly defined in Assumption 4 with δij ≡ 1, in
other words a.s.,

E[∥ξk∥2|Qk−1] ≤ Γ11∥x̂k∥2 + Γ12∥ŷk∥2, (18)

E[∥ψk∥2|Qk−1] ≤ Γ21∥x̂k∥2 + Γ22∥ŷk∥2. (19)

Here, we introduce four variables {δij} to demonstrate
the relationship between the variances of stochastic terms
and two errors. If δij ≡ 0, it reduces to the form already
studied in Doan (2022). However, when the stochastic term
is generated from a more general form of stochastic obser-
vation, we will have δij > 0, which are the so-called state-
dependent noise assumptions introduced by Ilandarideva
et al. (2023) and Karandikar and Vidyasagar (2023). As-
sumptions 4 and 5 introduce more fundamental assumptions
of an overparametrized model studied in Sebbouh, Gower,
and Defazio (2021) with respect to two-time-scale conver-
gence. Examples are widely used in Robbins-Monro setting
SA, least squares, logistic regression (Moulines and Bach
2011), and articles on stochastic gradient descent (Chen
et al. 2020).

With δij > 0, when xk and yk are closer to their targets,
the variance of the stochastic term will be lower. Intuitively,
this can accelerate the convergence rate compared to the case
where δij ≡ 0 because the variance decreases. We will the-
oretically demonstrate that these assumptions accelerate the
convergence rate. Additionally, there is a qualitative accel-
eration when δij ≡ 1, where Assumption 5 is sufficient to
achieve an exponential convergence rate of O

(
e−ϵk

)
.

It should be noted that we only make separate assump-
tions about the variance for both {ξk} and {ψk}, respec-
tively. However, we do not impose any limits on the correla-
tion between the two martingale differences.

For simplicity, we only consider the condition under a cer-
tain form of coefficients αk and βk, where

αk =
α

(k + 1 + k0)a
, βk =

β

(k + 1 + k0)b
. (20)

Assumption 6. {ξk}k≥0 and {ψk}k≥0 are similarly de-
fined in (15), and for a fixed k0 there exist constants
Γ′
11,Γ

′
22, γ1, γ2 ≥ 0 such that γ1 − γ2 ∈ [−1, 12 ) and vari-

ances can be controlled as follows almost surely,

E[∥ξk∥2|Qk−1] ≤ Γ′
11(k + 1 + k0)

−γ1 , (21)

E[∥ψk∥2|Qk−1] ≤ Γ′
22(k + 1 + k0)

−γ2 . (22)

In contrast to the former definition, this could be re-
garded as time-dependent noise assumptions. It represents
a special case of the conditions studied in Karandikar and
Vidyasagar (2023). We will also study how the convergence
rate changes with respect to γi. Similarly, as iteration k in-
creases, the variance of the update will decrease, potentially
accelerating the convergence rate. However, as γi → ∞, it
will not achieve an exponential convergence rate. This re-
flects an inherent difference between state-independent and
time-dependent two-time-scale SA. Note that the condition
γ1 − γ2 ∈ [−1, 12 ) is necessary in the proof of Theorem 3 to
balance the two different convergence rates.

Connection Between Assumptions and Application
Assumptions 5–6, along with the exponential convergence
rate, are intended to demonstrate a specific scenario where
fast convergence is achievable and valuable in practical ap-
plications of stochastic approximation. Although these as-
sumptions may appear restrictive, they are motivated by and
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have strong connections with control systems and reinforce-
ment learning, where exponential convergence is essential
for efficient operations. For example, recent studies such
as Chen et al. (2020) incorporate a second-order moment
assumption for SGD analysis, and Kaledin et al. (2020)
highlights how contraction-based assumptions can acceler-
ate convergence, even in multi-scale frameworks.

Moreover, Assumption 5 supports various applications in
non-linear optimization and two-time-scale stochastic con-
trol, where stringent convergence rates facilitate computa-
tional efficiency. Practical examples include high-frequency
trading algorithms Abergel et al. (2016); Gatheral (2011)
and adaptive filtering Haykin (2002), where stability and
rapid convergence are critical to performance. Furthermore,
recent work on stochastic gradient methods Bottou, Curtis,
and Nocedal (2018) underscores the importance of expo-
nential rates in improving the training efficiency of complex
models. By rigorously analyzing this case, we provide a the-
oretical benchmark that could inform future research in set-
tings where fast convergence is feasible and advantageous.

Lemmas
In general, we have

x̂k+1 = x̂k − αkf(xk, yk) + λ(yk)− λ(yk+1)− αkξk,
(23)

ŷk+1 = ŷk − βkg(λ(yk), yk)

+ βk(g(λ(yk), yk)− g(xk, yk))− βkψk. (24)

Here, we show the upper bounds for x̂k and ŷk. Prior to
this, we propose the following lemmas to provide the recur-
sive relational formulas for errors. Here we denote a ≲ b
when there exists an irrelevant constant c such that a ≤ cb.

Lemma 1. Suppose that Assumptions 1–4 hold. Let xk and
yk be updated by (1). Then, for all k ≥ 0, we have

E[∥x̂k+1∥2|Qk−1]− (1− µfαk)∥x̂k∥2

≲(βk + α2
k)∥x̂k∥2 + (βk + β2

k)∥ŷk∥2

+
β2
k

αk
E[∥ψk∥2|Qk−1] + α2

kE[∥ξk∥2|Qk−1]. (25)

Proof. We provide a detailed statement and proof in Ap-
pendix A.1 of the supplementary material.

Lemma 2. Suppose that Assumptions 1–4 hold. Let xk and
yk be generated by (1). Then, for all k ≥ 0, we have

E[∥ŷk+1∥2|Qk−1]− (1− µgβk)∥ŷk∥2

≲(βk + β2
k)∥x̂k∥2 + β2

k∥ŷk∥2 + β2
kE[∥ψk∥2|Qk−1]. (26)

Proof. We provide a detailed statement and proof in Ap-
pendix A.2 of the supplementary material.

These two lemmas provide a well-controlled upper bound
on the expected error between two adjacent iterations, es-
tablishing our basic foundation. We also observe that the two
main terms that affect the convergence rate are αk∥x̂k∥2 and
βk∥ŷk∥2. These terms play an important role when consid-
ering the Lyapunov function stated below.

We define c = 4
L2

g

µfµg
and the Lyapunov function here,

denote it as Vk, is:

Vk = V (x̂k, ŷk) = c
βk
αk

∥x̂k∥2 + ∥ŷk∥2. (27)

An insightful observation is that we need to balance two dif-
ferent variables, xk and yk. This will lead to the aforemen-
tioned Lyapunov function Vk.

Combining the above two lemmas allows us to analyze
the update of the Lyapunov function in the next lemma. It is
important to note that the difference between two iterations
depends primarily on the magnitude of βk and the distinct
forms of E[∥ξk∥2] and E[∥ψk∥2].
Lemma 3. Suppose that Assumptions 1–4 hold. Let xk and
yk be generated by (1). Suppose αk and βk decrease (not
necessarily strictly), and αk

βk
is sufficiently large. With a con-

stant C(α0, β0) generated by α0 and β0, we have

E[Vk+1]− (1− 1

2
µgβk)E[Vk] ≲ C(α0, β0)α

2
kE[Vk]

+ αkβkE[∥ξk∥2] +
(
β3
k

α2
k

+ β2
k

)
E[∥ψk∥2]. (28)

Proof. We provide a detailed statement and proof in Ap-
pendix A.3 of the supplementary material.

3 Convergence Under State-Dependent Noise
Assumptions

Now we consider the convergence results under certain
forms of coefficients αk and βk as in (20). These step sizes
form an algebraic fraction with respect to k with a trans-
lation to ensure a moderate update rate. Here, we denote
a ∧ b = min{a, b} and a ∨ b = max{a, b}. In Assumption
4, we define a linear programming function

m(x) =
(1 + δ11)x− δ11

1− δ11
∧ x

1− δ12

∧ (2− δ21)(1− x)

1− δ21
∧ 2(1− x)

1− δ22
, (29)

which is set to be the minimum of four linear functions.
m(x) depending on all four parameters δij is a delicate func-
tion set to satisfy

− 1 + 2a

≥− 1 + a+ t+ (1− a− t)δ11 ∨ −1 + a+ t− tδ12
∨ −3 + 4a+ t+ (1− a− t)δ21 ∨ −3 + 4a+ t− tδ22,

(30)

where a = argmaxx∈( 1
2 ,1]

m(x) and t = maxx∈( 1
2 ,1]

m(x).
This balances all terms with different orders in the proof and
achieves the maximum convergence rate of O(k−t). Here,
we draw the following conclusion.
Theorem 1. Suppose that Assumptions 1–4 hold. Let xk and
yk be generated by (1). We assume

b = 1, a = argmax
x∈( 1

2 ,1]

m(x), t = max
x∈( 1

2 ,1]
m(x). (31)
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In addition, β and α
β are sufficiently large. Let Cαβ =

C(α, β) ≥ C(α0, β0) defined in Lemma 3 and set k0 as
large enough. There exist two functions generated byM with
C1(M) = O(M) and C2(M) = O

(
M δ11∨δ12∨δ21∨δ22

)
as

M → +∞. Note that δij < 1, there exists a M s.t.

M ≥ 3kt0V0 ∨
3

a
C2(M). (32)

Together, we have ∀k ≥ 0,

E[Vk] ≤
M

(k + k0)t
. (33)

Proof. We provide a detailed statement and proof in Ap-
pendix A.4 of the supplementary material.

Theorem 1 provides a general view of how the conver-
gence rate relates to the parameters δij through a linear pro-
gramming function m(x). To better understand the implica-
tions of Theorem 1, particularly regarding the behavior of
m(x), we provide two enlightening special cases.
Corollary 1. Suppose that Assumptions 1–4 hold. Let xk
and yk be generated by (1). Moreover, we assume δ11 = δ12
and δ21 = δ22. Recall that ∆ij = 1 − δij , then under the
condition of Theorem 1,

a =
∆11 +∆22

∆11 + 2∆22
, t =

1 +∆22

∆11 + 2∆22
. (34)

There exist α, β, k0, and M , s.t. ∀k ≥ 0,

E[Vk] ≤
M

(k + k0)t
. (35)

Proof. We provide a detailed statement and proof in Ap-
pendix A.5 of the supplementary material.

It is evident that under the assumption that δ11 = δ12 and
δ21 = δ22, if δ11 ̸= 0, we always have a < t. This implies
that the condition δij > 0 indeed accelerates the conver-
gence rate to be faster than O (k−a), which is not demon-
strated in earlier studies. Furthermore, when δij = 0(∆ij =
1), we find that a = t = 2

3 . This is consistent with the results
in Doan (2022).

Moreover, this bridges the gap between stochastic and
deterministic two-time-scale SA. The latter is well-known
for achieving at least an exponential convergence rate of
O
(
e−ϵk

)
. As δij → 1−(∆ij → 0+), we observe that

t→ +∞, which naturally leads to the following result.
Now we investigate the case in Assumption 5 with con-

stant learning rates αk = α and βk = β. We define

c = 4
L2

g

µfµg
. The Lyapunov function is defined as follows

and denoted as Vk,

Vk = V (x̂k, ŷk) = c
β

α
∥x̂k∥2 + ∥ŷk∥2. (36)

Theorem 2. Suppose that Assumptions 1–3,5 hold. Let xk
and yk be generated by (1). Let Cβ = B1 + B2β with two
constants B1, B2, and we set ω = α

β . There exist three func-
tions generated by ω with D1(ω) = − 1

2µg + O
(
1
ω

)
as

ω → +∞, D2(ω), and D3(ω). We assume ω to be suffi-
ciently large and

D1(ω) ≤ −1

4
µg. (37)

Then there exists a β > 0 s.t.

e−ϵ ≜ 1 +D1(ω)β +D2(ω)β
2 +D3(ω)β

3 < 1. (38)

Together, we have ∀k ≥ 0,

E[Vk] ≤ e−ϵkV0. (39)

Proof. We provide a detailed statement and proof in Ap-
pendix A.6 of the supplementary material.

Combining Theorem 1 and 2, it is now clear that the
boundary between the polynomial convergence rate and the
exponential convergence rate occurs at δij ≡ 1. Specifically,
if δij < 1, the convergence rate remains polynomial, but
as δij → 1−, the convergence rate increases significantly.
When δij ≡ 1, an exponential convergence rate is achieved.

4 Convergence Under Time-Dependent Noise
Assumptions

We continue with the specified form of the coefficients αk

and βk as in (20), and proceed to derive our conclusion under
Assumption 6, where the noises satisfy the decay property at
a rate of O (k−γi).

Theorem 3. Suppose that Assumptions 1–3,6 hold. Let xk
and yk be generated by (1). We assume

b = 1, a =
2− γ1 + γ2

3
∈ (

1

2
, 1], t =

2 + 2γ1 + γ2
3

.

(40)

In addition, β and α
β are sufficiently large. Let Cαβ =

C(α, β) ≥ C(α0, β0) defined in Lemma 3 and set k0 as
large enough. There exists a function generated by M with
C1(M) = O(M) as M → +∞ and a constant C ′

2. There
exists a M s.t.

M ≥ 3kt0V0 ∨
3

a
C ′

2. (41)

Together, we have ∀k ≥ 0,

E[Vk] ≤
M

(k + k0)t
. (42)

Proof. We provide a detailed statement and proof in Ap-
pendix A.7 of the supplementary material.

Similarly, when γi ≡ 0, this reduces to the special case
studied in Doan (2022). Furthermore, we observe that t →
+∞ as γi → +∞, which aligns with the intuition that a
higher order of the time-dependent noise parameters γi also
accelerates convergence. However, note that the magnitude
t increases linearly with respect to γi, which contrasts with
the findings of Theorem 1. This difference explains why we
cannot reach the same conclusion about the exponential con-
vergence rate of O

(
e−ϵk

)
as stated in Theorem 2.
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5 Numerical Experiment
We conduct numerical experiments using two classical ex-
amples to illustrate the convergence rates in Sections 3 and
4. We initialize (x0, y0) = (1, 1), and choose (α, β) to sat-
isfy the same conditions as in Theorems 1-3. The step sizes
αk and βk are set as αk = α

(k+1+k0)a
and βk = β

(k+1+k0)b
,

where k0 is chosen optimally. It is important to note that
k0 increases rapidly with increasing (α, β) and affects the
step sizes exponentially. Therefore, within constraints, we
set the initial values of (α, β) as small as possible to pre-
vent slow convergence caused by the excessively small ini-
tial step sizes (Moulines and Bach 2011). For simplicity of
analysis, we set δij ≡ δ,Γij ≡ Γ, and γk ≡ γ. Γ

′

kk ≡ Γ
′

as
noise parameters. All experiments are repeated 1000 times.

For δ ∈ [0, 1), we present log-log plots of the averaged
Vk with respect to the number of iterations. For δ = 1,
we use the logarithmic plot. The slope of the line indicates
the convergence rate. Specifically, a relationship of the form
y = rx−s corresponds to log y = −s log x + log r. To en-
sure stability, we calculate the slope of the error lines using
iterations after 106.

SGD with Polyak-Ruppert averaging. We employ SGD
with Polyak-Ruppert averaging (3) under 5-dimensional set-
ting to minimize the function F (x) = (x21+sinx1, · · · , x25+
sinx5) under normal white noise {ξk}, which satisfies ei-
ther Assumption 4 or 5. The function f(x, y) = ∇F (x)
meets Assumptions 1–3 in Section 2, with parameters set
to Lf = 3, µf = 1, Lg = 2, µg = 1, and Lλ = 0.

Figure 1 illustrates the convergence results under various
parameters. For δij ≡ δ ∈ [0, 1), we examine five val-
ues: δ = 0.0, 0.2, 0.4, 0.6, 0.8 with Γ = 0.02. As shown
in Figure 1, at the beginning of iterations, the convergence
rate is no slower than our theoretical results. Moreover, with
increasing iterations and the decay of errors (or Lyapunov
functions Vk), the convergence rate is also close to our theo-
retical bound. Specifically, the slope closely approximates
t as defined in Theorem 1. Moreover, as δ increases, the
absolute value of the slope also increases, indicating faster
convergence of the algorithm. This result is consistent with
the intuition that a smaller noise volatility allows faster con-
vergence without significant fluctuations. Figure 1 demon-
strates that the algorithm actually achieves an exponential
convergence rate of O

(
e−ϵk

)
when δ = 1 and Γ

′
= 0.1.

Stochastic bilevel optimization. We consider an example
of stochastic bilevel optimization (5) specified as follows:

F (x, y) = 10(x+ h̃2(y))
2 + 10 sin(x+ h̃2(y)), (43)

G(x, y) = (x+ h̃2(y))
2 + sin(y) + y2, (44)

where h̃2(z) = sign(z)z2/2 if |z| ≤ 1 and sign(z)(|z| −
1/2) otherwise. We directly take the partial derivative of
equation (43) to obtain f(x, y) and g(x, y). It is straightfor-
ward to verify that Assumptions 1–3 hold with parameters
set to Lf = 60, µf = 10, Lg = 3, µg = 1, and Lλ = 3.
The noise terms {ξk} and {ψk} follow independent normal
distributions satisfying either Assumption 4 or 5.

Figure 2 illustrates the convergence results of the stochas-
tic bilevel optimization algorithm under two cases δ ∈ [0, 1)
and δ = 1. The convergence rate increases as δ approaches
1 within the interval [0, 1). Notably, all experiments in this
problem converge no slower than the theoretical predictions.
Furthermore, the algorithm achieves an exponential conver-
gence rate when δ = 1, which matches the theoretical results
of Theorem 2.

Moreover, we replicate the above experiments under time-
dependent noise assumptions. Figure 3 displays the conver-
gence results for the two examples mentioned above. We
calculate the slope of the lines in Figure 3 using data from
iterations after 105. The observed trends are analogous to
those in the state-dependent case. Notably, when γ = 4, the
error curve appears flat due to limitations in computational
accuracy. For this reason, we compute the slope using data
from iterations between 105 and 106 for γ = 4. As depicted
in Figure 3, the convergence rate increases with higher val-
ues of γ, and all experiments in this problem converge even
faster than the theoretical predictions.

6 Conclusion
This paper studies the convergence rate of two-time-scale
SA under state- and time-dependent noises. The noises de-
cay with respect to the state residual variables ∥x̂k∥2 and
∥ŷk∥2, or time (iteration number) k, respectively. We intro-
duce a linear programming functionm(x) to establish a gen-
eral relationship between the parameters δij and the conver-
gence rate of Vk. Specifically, in the state-dependent case
where δij ∈ [0, 1), the Lyapunov function Vk decays at a
polynomial rate of O(k−t), and a similar result holds in the
time-dependent case. Moreover, we derive explicit solutions
for the optimal step size when all noise decay parameters are
identical.

Furthermore, it is notable that two-time-scale algorithms
can achieve an exponential convergence rate under the con-
dition that the variances of noise are bounded by quadratic
forms of the state variables, i.e., ∥x̂k∥2 and ∥ŷk∥2.

We present two numerical examples: SGD with Polyak-
Ruppert averaging and stochastic bilevel optimization. The
convergence results corroborate our theoretical insights. As
δij → 1− or γi → +∞, the exponent t in the convergence
rate O (k−t) increases, potentially reaching O (k−∞). Fur-
thermore, numerical experiments indicate that when δij ≡ 1,
the exponential convergence rate of O

(
e−ϵk

)
in Theorem 2

can indeed be achieved.
In conclusion, our findings show that under the assump-

tions outlined in Ilandarideva et al. (2023) and Karandikar
and Vidyasagar (2023), two-time-scale SA can achieve a
convergence rate faster than O

(
k−1

)
and, in certain cases,

even attain an exponential convergence rate of O
(
e−ϵk

)
.
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Figure 1: The convergence results of SGD with Polyak-Ruppert averaging. The figure on the left is a log-log plot in case
δ = 0.0, 0.2, 0.4, 0.6, 0.8; the figure on the right is a logarithmic plot in case δ = 1. All R-squares of the fitted slopes do not
exceed 1e-6.

Figure 2: The convergence results of stochastic bilevel optimization. The figure on the left is a log-log plot in case δ =
0.0, 0.2, 0.4, 0.6, 0.8; the figure on the right is a logarithmic plot in case δ = 1. All R-squares of the fitted slopes do not exceed
0.01.

Figure 3: The convergence results of SGD with Polyak-Ruppert averaging (left) and stochastic bilevel optimization (right) under
time-dependent noise assumption. The figure is a log-log plot in case γ = 0, 1, 2, 3, 4. All R-squares of the fitted slopes do not
exceed 0.1.
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